are

s question paper contains 4 printed pages]				
Roll No.				
S. No. of Question Paper: 5579				
Unique Paper Code : 2372013603				
Name of the Paper : Econometrics (DSC-NEP)				
Name of the Course : B.Sc.(H) Statistics				
Semester : VI				
Duration: 3 Hours Maximum Marks: 90				
(Write your Roll No. on the top immediately on receipt of this question paper.)				
Question no. 1 is compulsory.				
Attempt five more questions choosing at least 2 from each section.				
Use of non-programmable scientific calculator is allowed.				
1. (a) Fill in the blanks:				
(i) For $Y = X\beta + \mu$, where $E(\mu \mu') = V$, the Generalized least squares estimator is given by				
(ii) For GLM, we can express $e = Mu$, where matrix $M = \dots$.				
(iii) If the Durbin-Watson d test statistic is found to be equal to 0, then order autocorrelation is				
(iv) Spearman's rank correlation test is used to detect				

(b) State whether True/False. If Flase, then give the correct statement.

Farrar Glauber test offers a solution to the problem of Heteroscedasticity.

If there exists high multicollinearity, then the regression coefficients

P.T.O.

- (ii) Multicollinearity is a violation of assumption pertaining to error terms.
- (iii) The ordinary least squares procedure yields the BLUE of parameters of a General Linear model.
- (iv) Aitken estimator is used when the X matrix is not a full rank matrix.
- (v) A hypothesis such as $H_0: \beta_2 = \beta_3 = 0$ can be tested using the t test.
- (c) (i) Consider the data:

Y	-4	-2	0	2	4
X_2	1	2	3	4	5
X_3	5	7,	9.	11	13

Can the parameters of the model, $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$ be estimated?

Why or why not, if not then what linear functions of these parameters can you estimate? Show the necessary calculations.

(ii) From a cross-sectional data on 59 countries, the following regression was obtained:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

Running the auxiliary regression

$$\begin{split} e_1{}^2 &= -\ 5.8417\ +\ 2.5629\ X_{2i}\ +\ 0.6918\ X_{3i}\ -\ 0.4081(X_{2i})^2 \\ &-\ 0.049\ (X_{3i})^2\ +\ 0.0015(X_{2i})(X_{3i}); \end{split}$$

with $R^2=0.1148$. Test the presence of heteroscedasticity using White's Heteroscedasticity test. (given that the chi-square value at 5% level of significance is 11.0705). $5,5,2\frac{1}{2},2\frac{1}{2}$

Section-A

2. (i) Consider the following two models for n sample observations:

Model I :
$$Y_t = \beta_1 + \beta_2 X_t + u_t$$

Model II :
$$Y_t = \alpha_1 + \alpha_2 (X_t - \overline{X}) + u_t$$

Obtain the expressions of OLS estimators of β_1 , β_2 , α_1 and α_2 . Show that OLS estimators of β_1 and α_1 are not identical, however, OLS estimators of β_2 and α_2 are identical. Also, obtain expressions for variances of OLS estimators of β_1 , β_2 , α_1 and α_2 .

- (ii) For General Linear model, obtain $100(1-\alpha)\%$ confidence interval for E $[Y_{n+1} | \underline{c}]$ where $\underline{c}' = (1, X_{2,n+1}, \dots, X_{k,n+1})$. Also obtain $100(1-\alpha)\%$ confidence interval for the individual value Y_{n+1} .
- 3. (i) Obtain the estimates of the coefficients of the linear relation.

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

subject to the linear restriction $\beta_2=\beta_3$. It is given that n=25, X'X =

$$= \begin{bmatrix} 20 & 0 \\ 0 & 40 \end{bmatrix} \text{ and } X'Y = \begin{bmatrix} 15 \\ 25 \end{bmatrix}.$$

- (ii) Describe the terms "perfect Multicollinearity" and "high-but-imperfect Multicollinearity". Discuss the consequences when OLS formulae are applied to both of the cases? Illustrate your answer with the help of a suitable example.
- 4. (i) Discuss the solutions of Multicollinearity.
 - (ii) Discuss the method based on Frisch Confluence Analysis to detect the presence of Multicollinearity. 7,8

P.T.O.

Section-B

- 5. (i) Explain the Cochrane-Orcutt iterative procedure for a 2-variable regression model where disturbances follow first order autoregressive scheme.
 - (ii) For the two variable regression model, $Y_t = \beta_1 + \beta_2 X_t + u_t$ where $u_t = \rho u_{t-1} + \epsilon_t$ with $E(\epsilon_t) = 0$, $v(\epsilon_t) = \sigma_g^2$ and $cov(\epsilon_t, \epsilon_s) = 0$, for $t \neq s$, derive the expression for the mean and variance-covariance matrix of u, where

 $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$. Further, under this setup, obtain the expression for the variance of OLS estimator β_2 . How does it compare with the OLS formulae of variance of β_2 ?

- 6. (i) Discuss the test based on V on Neumann ratio for the detection of autocorrelation. If the value of the Durbin Watson test statistic is d = 1.875 based on 28 sample observations, then obtain the value of Von Neumann ratio.
 - (ii) In a two variables regression model $Y_i = \beta_1 + \beta_2 X_i + u_i$, where $E(u_i) = 0$, $V(u_i) = \sigma^2 X_i^2$ for all i = 1, 2, n, derive the expression of the Generalized least square estimator of β_2 along with its variance. Further obtain the variance of OLS estimator of β_2 under heteroscedasticity. Comment on the performance of the estimators by using the values of $X_i = 1, 2, 3, 4, 5$.
- 7. (i) Discuss the Goldfeld-Quandt test for heteroscedasticity. How do you proceed with the test when there is more than one variable in the model?
 - (ii) For the General Linear Model, $Y = X\beta + u$, where E(u) = 0 and E(uu') = V, where V is a known symmetric positive definite matrix. Find the best linear unbiased predictor of a single value of the regressand y_0 , given the row vector of prediction regressors x_0 .

alkaji, New Delhi