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Section_III

(a) Obtain the moment generating function of Logistic
distribution and hence find its mean and variance.

(b) Let X follows a standard Cauchy distribution. Find
the p.d.f for X2 and identify its distribution.

(7,Bt

(a) If X and Y are independent with common p.d.f.
(exponential):

x)0
x<0

Find the p.d.f of X _ y and identify its distribution.

(b) Find the characteristic function of standard Laplace
distribution and hence find its mean and standard
deviation_ (7,8)

(a) If X-N(0, l) and y.'N(0, l) are independent

random variables, then find the distribution of I
and identify it. Y 

)

(b) If X, X, Xr,...,X, are independent random
variables and X, has an exponential distribution
with parameter ei, i : 1,2, ..., n; then show that
Z = min(X,, X2, X3,..., X,) has an exponential

distribution with parameter !., , 
O, 1i.". ne) . (7,S)

[This question paper contains 4 printed pages.]
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Seeti on - I

(a) Derive moment generating function of Negative
Binomial Distribution. Obtain its mean and variance
from M.G.F. and hence show that mean is less
than variance.

(1000)
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(b) Let X, and X, be independent r'v''s each having

Geometric distribution qkp' k = 0'1'2' " Show that

the conditional distribution of X, given X, + X' is

uniform. (7'8)

(a) Suppose X is a non-negative integral valued

random variable' Show that the distribution of X

is geometric if it "lacks memory"' i'e ' if for each

4 (a)lfX&Yare
with Parameters

U=X+Y, Z =

a T(p + v) variate

Scction-lI

independent Camma v ari ate s

p and v resPectively, show that

f are indePendent

and Z is a P, (P' v)

and U is
variate.

2
))

k20 and Y = X - K

P(X: t), for t 2 0'

(b) If xr x,, , X* are k independent Poisson variates

with parameters 1,,,)"r" '

conditional distribution

)"u then Prove that the

n XolX), where X = xr + x2 + l- X*

(7,8)

(b) Define Beta distribution of First kind' Compute rrh

moment and harmonic mean for Beta distribution

of First kind. (7'8)

(a) If X has a uniform distribution in [0'l] Find the

pdf of -2logX and identify the distribution'

(b) If X is a gamma variate with single parameter 2 '
then obtain its m.g.f. Hence deduce that the m'g'f'

onc has P(Y=tlX>K):

5

P(X, n X, n...

is multinomial B as

J (a) A box contains N items of which 'a' items are

defective and 'b' are non-defective' (a+b=N)'

A sample of 'n' items is drawn at random' Let X 
)

be the number of defective items in the sample'

Obtain the probability distribution ofX And show

that the Binomial distribution is a limiting case of

HyPer-geometric d istribut ion '

(b) Obtain the first four cumulants of negative binomial

distribution. And hence find p, and pr' (7'8)

5. (a) Define rectangular (or uniform) distribution and

) find its mean, variance and mean deviation about

mean.

(b) Show that mean value of positive square root of

', 
,(".|)fJr,,t"l)

deviation of a N(PL, o2)

Jrii

of standard gamma variate tends to exp

1, -> co.

a y(1., n) variate

prove that mean

from its mean is

(7,8)

Hence

variate

(7,8)

P.T.O.


