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1. (a) Find the Fourier sine series for unity in
O<x<n and hence show that

1 1 1 n

1+§+5_2+‘7T+""=§‘

(b} Obtain the complex Fourier series expansion
for the function f(x)=e"in [-n,7]. Use the
Parseval relation to show that

@ 1
anqm= n COﬂ')T['

(c) Using the Fourier integral theorem, show
that if

f(x)=

sinx, 0O0<x<n
0, x<0,x>n

then
f(x)= lI:CDSaX+f02(f(n—X))da’_m <X <w,
','t -
a:t]
cos| ==
Hence show that r % da==1.
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2. (a) Show that the Fourier series of the
triangular function defined by

25, - 0<x=sn/2
f(x)= 2"

Z(rn-x), n/2<x=n

I

is

f(x} _ 8 [sinx sin3x + sin5x sin7x N
RE 12 32 52 72 S

. ® 1 n?
Further show that me -

(b) State and prove Riemann-Lebesgue Lemma.

(c) Determine the Fourier series expansion of

x? for -m<x<m by performing the

integration of the appropriate Fourier series.

3. (a) If f(s) and E(s) are the Laplace transform
of f () and g (t) respectively, then prove that :

(1) £[H(t-a)I(t-a)]=e™ £{f(t)}
(i) £[H(t-a)g(t)]=e"L{g(t+a)}.

3 P.T.C.
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Also, find out the Laplace transform of the
function

og e

(b) Find the inverse Laplace transform of the
following functions :

s

(i) (s”+a2)(sz+b’)
A

(ii) s(s+a)

(c) Define convolution of two functions in Laplace
transform and then prove the following :

(i) frg=g«f
) S[(Fa)(0)]=(r2)(t)+£(0)a ()

4. (a) Define the Fourier transform of a function
f(t) and show that :

2

flexp(-a|x|)} = ;[ET?-—I{TJ’& >0

4
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Define the Fourier cosine transform of a uw=cau,‘x+f(x,t),0<x<1r, ke
function f(x). Let f (x) and its first derivative u(x,0) =0, 1, (%,0)=0, O<x<m,
vanish as x —eco. If F (k) is the Fourier - o

transform, then prove that: u(0,t)=0 u(rt)=0, B0

(b

Obtain the solution to the above equation of

" 2., :
fe [f (x)] =-kf; (k)”\j;f (0) motion by applying the finite Fourier sine
transform. :
(c) Prove the following : -
2 (c) Obtain the solution of the following Cauchy
(i) j:(f*g)(x)dx =I:f(u)duf:g(v) dv Problem for the Diffusion Equation using
Fourier transform.
(ii) I:F(k)g(k)dk='|:f(x)(}(x) dx, ut=kuxx’ ~w<X<w t>0
where F(k) and G(x) are Fourier where k is a diffusivity constant with the
transforms of f(x) and g(k) respectively. initial condition
" 5. (a) Find the solution of the ordinary differential u(x,0)=1(x), —w<x<w
L 6. (a) Use Laplace transform to find the solution of
2 the following equation
d'u
—F+au=f(x),ww<x<w Xu, + 1, =X, x>0, t>0
by the Fourier transform method. with the initial and boundary conditions
(b) Let a string of length © be fixed at both the u(x,0)=0 for x>0,

ends. The motion of the string due to a force

u(0,t}=0 for t>0
acting on it is governed by ( ’ )

5 PTIO.
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(b) Use Laplace transform to find the solution of
the system of equations

dx
FT
45 +2x%,-3x%,=0

with x,(0) = 0 and x,(0) = 1.
(c} Use Laplace transform to solve the equation
u =ku,, x>0,t>0
with the initial and boundary conditions
u(x,0)=0, x>0
u(0,t) =1(t), t>0
u(x,t) >0 asx—-w, t>0
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