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1. (a) Let T be a linear operator on R? defined as ‘
T a) 2a+b
b) la-3b)
. 1) (0
For the ordered basis B={(0J,[l]} and
1y £l
B'={(J,(2]}, of R2, find the change of

coordinate matrix Q that changes B'-coordinates

into B-coordinates. Also, verify that
i
[T], =Q"[T];Q. (2.5+5)

(b) Let V = P,(R) and for-p(x) € V, let f,, f, € V"
be defined as

6 (p(x)) = [, p(t)et
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(c¢) Find the best fit linear function for the data
{(-3,9), (-2,6), (0,2), (1,1)} using the least squares
approximation. Also, compute the error E.

(5+2.5)

(a) Let T be a normal operator defined on a finite
dimensional real inner product space V whose
characteristic polynomial splits. Prove that V
has an orthonormal basis of eigen vec’tors of
T. Hence prove that T is self-adjoint.

(5+2.5)

(b) For the following matrix A, find an orthogonal
matrix P and a diagonal matrix D such that

AP = D.

A’12
H=1, ) (7.5)

(¢) (i) State the Spectral theorem.

P10,
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(c) Let W = span ({(i,0,1)}) in C3. Find the

orthonormal bases for W and W+, (7.5)

& (a) Let V = P(R) with the inner product defined as

(£(x), g(x)) = [[F(1) g(t)at, v £(x), g(x) < V.

Find the orthogonal projection of the vector
h(x) = 4 + 3x — 2x? on the subspace W = P,(R):
(7.5)

(b) (i) Let V be a finite dimensional inner product
space and 3 be an orthonormal basis for V.

If T is a linear operator on V, show that
[, = (T,
(ii) For the inner product space V = C? and linear
operator
T(z;, 2,) = 2z, + iz,, (1 - i)z),

evaluate T" at z = (3 -1, 1 +21i). (4.5+3)
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Prove that {f,f,} is a basis for V* and find a
basis of V for which it is the dual basis.

(3+4.5)

(c) Let V be finite dimensional vector space. Define
the annihilator S® of a subset S of V and prove
that SO is a subspace of V*. If W, and W, are

subspaces of V, prove that

(W, + W) = WOAWS.  (3.5+4)

1

‘ i
2. (a) Let _A=(2 ,)EMM(C). Determine all eigen

values of A and for each eigen value A of A, find
the set of eigen vectors corresponding to A. Also,
find a basis for C? consisting of eigenvectors of

A. (2.5+5) .

»T.0.
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(b) Let T be a linear operator on P,(R) defined as

T(f(x)) = f(0) + f(1)(x +x).

Test the linear operator T for diagonalizability. If

T is diagonalizable, then find a basis p for V such

that [T], is a diagonal matrix. (2.5+5)

(c) Let T be a diagonalizable linear operator on a
finite dimensional vector space V and A, A,.... ... A

be the distinct eigen values of T. Prove that

V=E, ®E, .....0E, , where E, is the eigen
space of A, for all i. €73

3. (a)Let T be a linear operator on the vector space

V = R* defined as
T(a,b,c,d) = (a+b, b—c, at+c, a+d)

Find an ordered basis of the T-cyclic subspace W
of V generated by z = e,. Also, find the

characteristic polynomial of T, (3+4.5)
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(b) Let T be a linear operator defined on a finite
dimensional vector space V. Prove that the

characteristic polynomial and the minimal

polynomial of T have the same zeros. (7.5)

(c) Let T be a linear operator on V = Mnxn(R) defined
as T(A) = A'. Find the minimal polynomial of T.

Hence show that T is diagonalizable. (7.5)

4. (a) Let V be an inner product space, prove that the

following inequality holds

‘(x,y)lé“x" ||yl|, for all x,y € V.

Also, verify that the inequality holds for x = (1, 2i,
1+i),y=(+1i,1,2) in C3, (5+2.5)

(b) Let V be an inner product space and let S be an
orthogonal subset of V consisting of nonzero
vectors. Prove that S is linearly indépendent.

(7.3)

P.T.O.



