[This question paper contains 4 printed pages.]

- (c) Prove that in a ring R with unity 1,
  - (i) if 1 has infinite order under addition, then the characteristic of R is 0,
  - (ii) if 1 has finite order n under addition, then the characteristic of R is n.

Hence or otherwise state the characteristics of the rings  $\mathbb{Z}$ ,  $M_2(\mathbb{Z})$  and  $\mathbb{Z}_3[i]$ .

- (a) State the ideal test. Let R be a commutative ring with unity and let a ∈ R. Then verify that the sets I = {ra | r ∈ R} and S = {ar | r ∈ R} are ideals of R.
  - (b) Let  $\phi: R \to S$  be a ring homomorphism. Prove that:
- (i)  $\phi(nr) = n\phi(r)$  and  $\phi(r^n) = (\phi(r))^n$  for any  $r \in R$  and any positive integer n.
  - (ii)  $\phi(R)$  is commutative if R is commutative.

Taji, New Delhi-

(c) Prove that every ring homomorphism  $\phi$  from  $\mathbb{Z}_n$  to itself has the form  $\phi(x) = ax$ , where  $a^2 = a$ . Also, find Ker $\phi$ .

JOHNSON MENT A TO A ALTONOYOUR Roll No.....

Sr. No. of Question Paper: 5106

Unique Paper Code : 2354000009

Name of the Paper : Abstract Algebra

Name of the Course : COMMON PROG GROUP

Semester : VI

Duration: 3 Hours Maximum Marks: 90

## Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All the six questions are compulsory.
- 3. Attempt any two parts from each question.
- 4. Each part carries 7.5 marks.
- 5. Use of Calculator not allowed.
- 1. (a) Define SL(2, F) and find the inverse of the

element 
$$\begin{bmatrix} 3 & 4 \\ 4 & 4 \end{bmatrix}$$
 in  $SL(2, \mathbb{Z}_5)$ .

- (b) Describe the symmetries of a square. Construct the corresponding Cayley Table.
- (c) Prove that the set  $G = \begin{cases} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} | a, b, c \in \mathbb{R} \end{cases}$  is a

group under matrix multiplication.

- (a) If H and K are subgroups of a group G, show that H ∩ K is a subgroup of G. What can you say about H ∪ K? Justify.
  - (b) Let G be a group. Then prove that:  $c(a) = c(a^{-1})$  $\forall a \in G$ , where c(a) is the centralizer of  $\alpha$  in G.
  - (c) Prove that the center of a group G is a subgroup of G. Find the center of the group D<sub>4</sub>. Justify.

Artemet any two parts from each apastion.

- (a) Define a cyclic group. Find an example of a noncyclic group, all of whose proper subgroups are cyclic. Justify your answer.
  - (b) Let  $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{pmatrix}$ ,  $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}.$

Write  $\alpha$ ,  $\beta$  and  $\alpha\beta$  as product of disjoint cycle and also find  $\beta^{-1}$ .

(c) State the Lagrange's Theorem. Let |G| = 60, then what are the possible orders for subgroups of G.

3

- (a) Let H be a subgroup of a group G, then show that either  $\alpha H = bH$  or  $\alpha H \cap bH = \phi$  for every  $\alpha$ , b ∈ G. Also, find all the left cosets of {1,11} in U(30).
  - (b) Define the factor group. Also, let  $G = \mathbb{Z}_{24}$ , then find the order of the element 14+<8> in the factor group  $\mathbb{Z}_{24}/<8>$ .
  - (c) Consider the map  $f: \mathbb{Z} \to \mathbb{Z}_n$  defined by f(m) =mmodn. Show that f is a homomorphism. Also, find the Kerf.
- (a) Show that the set  $\mathbb{Z}[x]$  of all polynomials in the variable x with integer coefficients under addition and multiplication is a commutative ring with unity
  - (b) State the subring test. Prove that in a ring R, the set  $\{x \in R \mid \alpha x = x\alpha \text{ for all } \alpha \in R\}$  is a subring of R. Find all the subrings of the ring  $\mathbb{Z}$ .