[This question paper contains 8 printed pages.]

(b) Test for the convergence of the series whose nth term is

$$\frac{\sqrt{n+1}-\sqrt{n-1}}{n}$$

(c) Show that the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log(n+1)}$$

is conditionally convergent.

nda uu sõndamit usus (* . 🐳

Your Roll No.....

Sr. No. of Question Paper: 4765

Unique Paper Code : 2354002003

Name of the Paper : Elements of Real Analysis

Name of the Course : Common Program Group: GE

Semester : IV

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- Write your Roll. No. on the top immediately on receipt of this question paper.
- Attempt all questions by selecting two parts from each question.
- 3. Part of the questions to be attempted together.
- 4. All questions carry equal marks.

- (a) Define infimum and supremum of a set. Find the infimum and supremum, if exist, of the following sets:
 - (i) $\left\{2 + \frac{1}{n} : n \in \mathbb{N}\right\}$.
 - (ii) $\left\{\frac{x+1}{x}: x > 2\right\}$.
 - (b) Let F be an Archimedean ordered field, $A \subseteq F$, and $u \in F$. Prove that $u = \sup A$ if and only if for all $\varepsilon > 0$,
 - (i) for all $x \in A$, $x < u + \varepsilon$, and
 - (ii) there exists $x \in A$, such that $x > u \varepsilon$.
 - (c) Define a field. Prove that the set \mathbb{Z} of integers with ordinary addition and multiplication is not a field.

- is not convergent by using the Cauchy criterion for convergence of series.
- (c) Determine whether the Geometric series

$$\sum_{n=0}^{\infty} \frac{3^n + 4^n}{5^n}$$

converges or diverges. Find the sum of the series if it converges.

(a) State the Integral Test for convergence of a series.
 Use it to show that

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

diverges.

- (c) Find the limit of the sequence $\{x_n\}$, where x_n is given by
 - $(i) x_n = \frac{n^2}{(n)!}$
 - (ii) $x_n = \frac{1+2+3+\cdots+n}{n^2}$
- 5. (a) Prove that if the series $\sum a_n$ converges, then $\lim_{n\to\infty}a_n=0$. Give an example of a divergent series such that $\lim_{n\to\infty}a_n=0$. What do you conclude?
 - (b) Show that the Harmonic series
 - $\sum_{n=1}^{\infty} \frac{1}{n}$

- 2. (a) In any ordered field F, prove the following properties:
 - $(i) -|x| \le x \le |x|.$
 - (ii) $\max\{x, y\} = \frac{x+y+|x-y|}{2}$ and $\min\{x, y\}$ $\frac{x+y-|x-y|}{2}.$
 - (b) State completeness property of an ordered field.
 Prove that in a complete ordered field F, sup(A∪B)
 = max {sup A, sup B}, where A and B are bounded above subsets of F.
 - (c) (i) Let

$$x_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}}$$

for $n \in \mathbb{N}$. Show that the sequence $\{x_n\}$

4765

5

converges. Find its limit.

- (ii) Give an example of sequences $\{x_n\}$ and $\{y_n\}$ for which $\lim_{n\to\infty} x_n = 0$, but $\lim_{n\to\infty} x_n y_n \neq 0$.
- (a) Define the convergence of a sequence. Using the definition of convergence, evaluate

$$\lim_{n\to\infty}\frac{3n^2+4n}{n^2+5}.$$

Find the value of the natural number n_0 for $\epsilon = 0.01$

- (b) Let X = {x_n} and Y = {y_n} be sequences of real numbers that converge to x and y, respectively.
 Prove that the sequence X + Y converges to x + y.
- (c) Let $\{x_n\}$ be a sequence of real numbers defined

inductively by $x_1 = \sqrt{7}$ and

$$x_{n+1} = \sqrt{7 + x_n},$$

for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges, and find its limit.

4. (a) Prove that

$$\lim_{n\to\infty}n^{1/n}=1.$$

(b) Define Cauchy sequence of real numbers. Further, prove that the sequence

$$\{x_n\} = \left\{\frac{n}{n^2 + 1}\right\}$$

is a Cauchy sequence.