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(b) Test for the convergence of the series whose nth

term is

yn+1-vn-1
- :

(c) Show that the series

2 (=1)™*
log(n + 1)
n=1

is conditionally convergent.

.

(1700)
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1. (a) Define infimum and supremum of a set. Find the
infimum and supremum, if exist, of the following

sets:
(i) {2 +iine N}.

(ii) {xxli:x o 2}.

(b) Let F be an Archimedean ordered field, ACF,
and u € F. Prove that u = sup 4 if and only if for

all ¢ =0,

(i) for all x € 4, x <u + ¢, and
(ii) there exists x € A, such that x > u - ¢.

(c) Define a field. Prove that the set 7 of integers

with ordinary addition and multiplication is not a

field.
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is not convergent by using the Cauchy criterion

for convergence of series.

(¢) Determine whether the Geometric series

o0
3" 44"
Sn
n=0
converges or diverges. Find the sum of the series

if it converges.

6. (a) State the Integral Test for convergence of a series.

Use it to show that

e}
2
ninn
n=2
diverges.
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(¢) Find the limit of the sequence {x_}, where x 1is

given by
2
« n
W) X =5
v _ 14243++n
() xp = =—5—

5. (a) Prove that if the series ) a, converges, then

lim a, = 0. Give an example of a divergent
n—oo

series such that lima, =0. What do you
n—0co

conclude?

(b) Show that the Harmonic series

Sl

>

n=1
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2. (a) In any ordered field F, prove the following

properties:

(1) —|x| <x < |x|.

_x+y+x—y|

(il) max{x, y} and min {x, y}

x+y—|x—y|
—_

(b) State completeness property of an ordered field.
Prove that in a complete ordered field F, sup(4URB)
= max {sup 4, sup B}, where A and B are bounded

above subsets of F.

(¢) (1) Let

1. 1 /|
xn=1+§+?+---+ﬁ

for n € N. Show that the sequence {x,}

P.T.O.
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converges. Find its limit.

(i) Give an example of sequences {x | and {y,}
for which lim x, = 0,, but lim Xy, # 0.
n—oo n—oo

3. (a) Define the convergence of a sequence. Using the

definition of convergence, evaluate

" 3n? + 4n
Y] ————mem—
n-o n2+4+5
Find the value of the natural number n, for

€ = 0.01

(b) Let X = {x,} and ¥ = {y,} be sequences of real
numbers that converge to x and y, respectively.
Prove that the sequence X + Y converges to

X F Wi

(c) Let {x, } be a sequence of real numbers defined
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inductively by x, = ﬁ and

Xn+1 = V 7 +xn:

for all n € N.. Prove that {x } converges, and

find its limit.

4. (a) Prove that

lim n2/" = 1.
n—oo

(b) Define Cauchy sequence of real numbers. Further,

prove that the sequence

) = ()

nZ+1

is a Cauchy sequence.
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