4

Section C

- 7. (a) If X and Y are i.i.d exponential variates with parameter λ . Find distribution of $U = \frac{Y}{X}$. Also find expected value of U.
 - (b) Define standard laplace distribution. Find its characteristic function and hence find mean and variance.
 (8,7)
- (a) Prove that random variable X follows Cauchy distribution with parameters a and b iff random variable X⁺ follows Cauchy distribution with

parameters $\frac{a}{c}$ and $\frac{b}{c}$, where $c = a^2 + b^2$.

- (b) Define logistic distribution. Find its cumulant generating function and hence find mean and variance.
 (8,7)
- (a) Let X and Y be i.i.d. standard Cauchy variates.
 Find the pdf of random variable U = XY.
 - (b) Let $X_1X_2,..., X_n$ be a random sample from a population with continuous density. Show that $Y_1 = \min(X_1, X_2,..., X_n)$ is exponential with parameter $n\lambda$ if and only if each X_i is exponential with parameter λ . (8,7)

(1000)

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper	r :	1576 G
Unique Paper Code	:	2372012302
Name of the Paper	:	Advanced Probability Distributions, DSC – 8
Name of the Course	:	B.Sc. (Hons.) Statistics (Under NEP – UGCF)
Semester	:	III aujan College
Duration : 3 Hours		Maximum Marks : 90
Instructions for Candidates		

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt six questions in all selecting two-questions from each section.
- 3. All questions carry equal marks.

Section A

 (a) Let X be the negative binomial variate with parameters k and p. Show that the central moment satisfies recurrence formula :

$$u_{r+1} = q\left(\frac{d\mu_r}{dq} + \frac{rk}{p^2}\mu_{r-1}\right), r = 1, 2, \dots$$

Hence find β_1 and β_2 .

P.T.O.

- (b) Define hyper-geometric distribution and find its mean and variance. (8,7)
- (a) The trinomial distribution of two r.v.'s X and Y is given by

$$f_{X,Y(x,y)=\frac{n!}{x!y!(n-x-y)!}p^{x}q^{y}(1-p-q)^{n-x-y}}$$

For x, y = 0, 1, 2, ..., n and $x + y \le n$, where $0 \le p$, $0 \le q$ and $p + q \le 1$.

- (i) Find the marginal distribution of X and Y.
- (ii) Find the conditional distribution of X and Y and hence obtain
 - (a) E(X|Y = y) (b) E(Y|X = x).
- (b) Define 'lack of memory' property. Suppose X is a non-negative integral valued random variable. Show that the distribution of X is geometric if it "lacks memory". (8,7)
- (a) Obtain Poisson distribution as a limiting case of binomial distribution.
 - (b) Let X_1 , X_2 be independent r.v.'s each having geometric distribution with probability law $p(k) = q^k p$; k = 0, 1, 2, ... Show that the conditional distribution of X_1 given $X_1 + X_2$ is uniform.

(8,7)

Section B

(a) If X₁ and X₂ are independent rectangular variates on [0,1]. Find the distribution of:

(i) X_1/X_2 (ii) X_1X_2 (iii) $X_1 + X_2$.

- (b) Let X and Y be independent gamma variates with parameters μ and v respectively. Let U = X + Y and Z = X/(X + Y). Find the distributions of random variables. (8,7)
- 5. (a) If X and Y are two independent random variables with p.d.f. f(x) = e^x; x ≥ 0 and g(y) = 3e^{-3y}; y ≥ 0, then find the p.d.f. of Z = X/Y and also identify the distribution.
 - (b) Let $X \sim \beta_1$ (m, n) and $Y \sim y(\lambda, m + n)$ be independent random variables, (m, n, $\lambda > 0$). Find the pdf of XY and identify its distribution.

(7,8)

- (a) Define beta distribution of second kind. Compute mean and variance for beta variate of second kind.
 - (b) If X is a gamma variate with parameter λ then obtain its m.g.f. Hence deduce that the m.g.f. of

standard gamma variate tends to
$$\exp\left(\frac{t^2}{2}\right)$$
 as $\lambda \to \infty$.
Also interpret the result. (8,7)

P.T.O.