4493

4

- (c) For the autoregressive series $y_{t+2} + \alpha y_{t+1} + \beta y_t = \varepsilon_{t+2}$; $(\alpha^2 - 4\beta > 0)$, show that $1 - r_1 = \frac{1 + \alpha + \beta}{1 + \beta}$ and hence that $1 + \alpha + \beta$ is non-negative. (4,5,6)
- (a) Describe the Brown's discounted regression procedure for a steady time series model and show that it is equivalent to exponential smoothing.
 - (b) For the model

 $(1-B)(1-0.2B)y_{t} = (1-0.5B)z_{t}$

where $\{Z_t\}$ is a discrete-time, purely random process such that $E(Z_t) = 0$, $Var(Z_t) = \sigma_z^2$ and successive values of Z_t are independent, find the forecasts for one- and two- steps-ahead and compute the variance of their errors. Hence or otherwise, show that a recursive expression for forecasts three or more steps ahead is given by

 $\hat{y}_{N}(h) = 1.2 \, \hat{y}_{N}(h-1) - 0.2 \, \hat{y}_{N}(h-2)$

Further, if $z_N = 1$, $y_N = 4$, $y_{N-1} = 3$, $\sigma_z^2 = 2$, find $\hat{y}_N(2)$ and the standard error of the corresponding forecast error. (7,8)

- 7. Write notes on any two of the following :
 - (a) Selection of trend type
 - (b) Variate difference method
 - (c) Bayesian forecasting $(7\frac{1}{2},7\frac{1}{2})$

(1000)

[This question paper contains 4 printed pages.]

Your Roll No..... G Sr. No. of Ouestion Paper: 4493 Unique Paper Code : 32377905 Name of the Paper : Time Series Analysis Name of the Course : B.Sc. (Hons.) Statistics -DSE : V Semester Maximum Marks : Duration: 3 Hours Instructions for Candidates Write your Roll No. on the top immediately on receipt 1.

2. Attempt any five questions.

of this question paper.

- 3. All questions carry equal marks.
- (a) Define a time series. Give any two objectives for analyzing a series.
 - (b) Define the decomposition of time series by additive and multiplicative hypothesis, clearly outlining the assumptions made.
 - (c) Identify which component of the time series is mainly responsible for the movement in the following time series :

P.T.O.

Wew Delt

- (i) Decrease in the construction activity during rainy months.
- (ii) A need for increased rice production due to increase in population.
- (iii) A fall in death rate due to scientific advancement.
- (iv) Eruption of a volcano. (5,6,4)
- 2. (a) Enumerate three properties of the curve

$$U_t = \frac{k}{1 + e^{a+bt}}; \ b < 0$$

and describe its different phases with respect to time series data of annual production of some industry. Justify that the output of an industry follows the logistic trend.

- (b) What do you understand by 'seasonal variations' in a time series? Describe the 'Ratio to Trend' method of computing the indices of seasonal variations, stating clearly the assumptions made. $(7\frac{1}{2},7\frac{1}{2})$
- 3. If $\frac{1}{m}$ [m] stands for the simple average of 'm' terms then
 - (i) prove that

$$\frac{1}{m} \left[m \right] y_0 \left[y_0 + \frac{m^2 - 1}{24} \, \delta^2 y_0 \right]$$

4493

3

(ii) show that

$$\frac{1}{m_1m_2...m_r} [m_1][m_2]...[m_r]y_0 = \left[y_0 + \frac{m_1^2 + m_2^2 + \dots + m_r^2 - r}{24} \delta^2 y_0 \right]$$

- (iii) if $m_1 = 4$, $m_2 = 4$, and $m_3 = 5$, obtain the weights of the iterated averages when the above formula is approximated by a cubic polynomial. (15)
- 4. (a) Given that a time series is composed of the trend, the oscillatory, and the random components. Discuss the effect of elimination of the trend on other components of the time series.
 - (b) Let a time series X_t observed at unit time intervals contain a deterministic sinusoidal component at a known frequency λ ,

$$\begin{split} \mathbf{X}_{t} &= \mathbf{A}_{0} + \mathbf{A}_{1} \mathrm{cos} \lambda t + \mathbf{A}_{2} \mathrm{sin} \lambda t + \mathbf{Z}_{t} \\ \text{where } \mathbf{Z}_{t} \text{ denotes a purely random process.} \\ \text{Estimate the unknown parameters } \mathbf{A}_{0}, \ \mathbf{A}_{1} \text{ and} \\ \mathbf{A}_{2}. \end{split}$$

- 5. (a) Define the terms autocorrelation and correlogram.
 - (b) Given that z_t is a purely random process such that $E(z_t) = 0$, $V(z_t) = \sigma^2$ and successive values of z_t are independent, for what values of λ_1 and λ_2 is the second order AR process

$$\mathbf{y}_{t} = \lambda_{1}\mathbf{y}_{t-1} + \lambda_{2}\mathbf{y}_{t-2} + \mathbf{z}_{t}$$

stationary? Obtain the complementary function of y_1 , if $\lambda_1 = 1/3$ and $\lambda_2 = 2/9$.