2991

8

Set up null and alternative hypotheses. Using a suitable test, can you say that the plant manager's suspicion is true at 5% level of significance?

(6,6)

J

- 8. (a) Discuss Mann-Whitney U test for the small, moderate and large samples. What happens when there are ties in large samples?
 - (b) For a SPRT of strength (α', β'), show the following inequalities :

(i)
$$\alpha' \leq \frac{\alpha}{1-\beta}$$

(ii) $\alpha' + \beta' \leq \alpha + \beta$ (8,4)

[This question paper contains 8 printed pages.]

: 32371602

: VI

Your Roll No.....

: Multivariate Analysis And Non-parametric Methods

: B.Sc. (H) Statistics, under

CBCS (LOCF)

Η

Sr. No. of Question Paper : 2991

Unique Paper Code

Name of the Paper

Name of the Course

Semester

Duration : 3 Hours

Maximum Marks: 75

raji, New Delhi-

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receip of this question paper.
- 2. Question 1 is compulsory.
- 3. Attempt five more questions selecting three questions from Section A and two questions from Section B.
- 4. Use of a non-programmable scientific calculator is allowed.

(1000)

2991

2

- 1. Attempt all parts :
 - (a) Fill in the blanks :

 - (ii) If $r_{12} = r_{13} = r_{23} = 0.6$ then the value of 1 - $R_{1.23}^2 = -$.
 - (iii) The relation between two values of U statistic is _____.
 - (iv) _____ is a non-parametric test for two related samples.
 - (v) Variance-covariance matrix of X is _____ and _____ matrix.
 - (b) Differentiate between nominal and ordinal scales of measurement along with suitable examples.

(c) If
$$X \sim N_3(\mu, \Sigma)$$
 where
 $\mu = \begin{pmatrix} 2.5 \\ 3.8 \\ 4.7 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 3 & -2 & -1 \\ -2 & 5 & 3 \\ -1 & 3 & 14 \end{pmatrix}$

then obtain the distribution of $X_{\sim}^{(1)} = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}$ and write its pdf.

2991

)

7

- (i) $P_{\theta_0}(A_0) \ge \frac{1}{B} P_{\theta_1}(A_0)$, where A_0 is the event that ultimately H_0 is accepted.
- (ii) $P_{\theta_0}(A_1) \leq \frac{1}{A} P_{\theta_1}(A_1)$, where A_1 is the event that ultimately H_1 is accepted.
- (b) Let $X_1, X_2, ...$ be the iid sequence of random variables from exponential distribution with parameter θ . Obtain the SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1(<\theta_0)$. Also, obtain the O.C. function and ASN function for the same.

(6,6)

- 7. (a) What are the assumptions of non-parametric test?Discuss one sample runs test of randomness.
 - (b) At a soda factory, the amount of soda put into each 12 ounce bottle by the bottling machine varies slightly. The plant manager suspects that the machine has a non-random pattern of overfilling the bottles (denoted by 1) and underfilling the bottles (denoted by 0). The following result was obtained :

2991

(b) Assume
$$X \sim N_4(\mu, \Sigma)$$
 where $\mu = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 6 \end{pmatrix}$ and
 $\Sigma = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 3 & 6 & 1 & -2 \\ 1 & 1 & 6 & 0 \\ 2 & -2 & 0 & 9 \end{pmatrix}$.
Let $X^{(1)} = \begin{pmatrix} x_1 \\ x_4 \end{pmatrix}$ and $X^{(2)} = \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$.

6

- (i) Obtain the conditional distribution of
 - $\left(\underset{\sim}{X^{(2)}}|\underset{\sim}{X^{(1)}}=\binom{1}{4}\right).$
- (ii) Define $Y = X_1 + X_3 X_4$. Obtain the distribution of Y. (4,8)

SECTION B

6. (a) Let X₁, X₂ be the iid sequence of random variables with pdf/pmf f_θ(x). Describe Wald's SPRT of strength (α,β) for testing H₀: θ = θ₀ against H₁: θ = θ₁. Further, establish the following inequalities :

)

(d) (i) If $(X,Y) \sim BVN(2,3,16,9,0.6)$, then obtain the

distribution of $U = \frac{X}{2} - \frac{Y}{3}$.

(ii) While performing SPRT, obtain the values of A and B when $\alpha = 0.3$, $\beta = 0.25$. $(1 \times 5,3,3,2 \times 2)$

SECTION A

2. (a) If $(X,Y) \sim BVN(0, 0, \sigma_1^2, \sigma_2^2, \rho)$ then show that

 $U = \frac{X}{\sigma_1} + \frac{Y}{\sigma_2}$ and $V = \frac{X}{\sigma_1} - \frac{Y}{\sigma_2}$ are independently normally distributed with means 0 and variances $2(1 + \rho)$ and $2(1 - \rho)$ respectively.

- (b) If (X, Y) ~ BVN(0, 0, 1,1, ρ) then obtain the correlation coefficient between X² and Y².
 (8,4)
- 3. (a) Let $X \sim N_p(\mu, \Sigma)$. Let X be partitioned into

$$\underset{\sim}{X}_{\stackrel{(1)}{\sim}}^{(1)} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_q \end{pmatrix} \text{ and } \underset{\sim}{X}_{\stackrel{(2)}{\sim}}^{(2)} = \begin{pmatrix} X_{q+1} \\ X_{q+2} \\ \vdots \\ X_p \end{pmatrix},$$

P.T.O.

correspondingly, mean vector and variancecovariance matrix be partitioned as $\mu = \begin{pmatrix} \mu^{(1)} \\ \tilde{\mu}^{(2)} \end{pmatrix}$

and
$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$
. Prove that $X \stackrel{(1)}{\sim}$ and $X \stackrel{(2)}{\sim}$

are independently normally distributed iff $\Sigma_{12} = \Sigma_{21}' = 0..$

(b) Consider the joint pdf of X and Y as

$$f(x,y) = \frac{1}{2} [f_1(x,y) + f_2(x,y)]; \ (x,y) \in \mathbb{R}^2$$

where $f_1(x, y)$ is the pdf of BVN(0, 0, 1, 1, ρ) and $f_2(x,y)$ is the pdf of BVN(0, 0, 1, 1, $-\rho$) then show that the marginal distributions of X and Y are normal. Further, show that X and Y are not independent even when $\rho(X,Y) = 0$. (7,5)

4. (a) If
$$(X, Y) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$
 with the pdf

$$f(x,y) = k \exp\left[-\frac{1}{102}[(y+3)^2 - (2.8)(y+3)(x+1) + 4(x+1)^2]\right];$$

(x,y) $\in \mathbb{R}^2$

(i) Obtain the estimates of the parameters μ_1 , μ_2 , σ_1^2 , σ_2^2 and ρ .

)

- (ii) Find E(X|Y = 3) and Var(X|Y = 3).
- (b) Given two multivariate normal distributions namely

 $N_p(\mu^{(1)}, \Sigma)$ and $N_p(\mu^{(2)}, \Sigma)$ as two populations and a measurement on a p-component vector of

variables defined by
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$
, explain the

discriminant procedure for classifying \tilde{x} vector into one of the two populations. Further,

(i) Show that
$$a'x = \delta' \Sigma^{-1} x$$
 where
 $\delta = \left(\mu^{(1)} - \mu^{(2)}\right)$ and $a = \Sigma^{-1} \delta$.
(ii) Establish that $h = \frac{1}{2} \left[a' \left(\mu^{(1)} + \mu^{(2)}\right)\right]$.
(6,6)

5. (a) If r₁₂ and r₁₃ are given, show that r₂₃ must lie in the range

$$r_{12}r_{13} \pm (1 - r_{12}^2 - r_{13}^2 + r_{12}^2 r_{13}^2)^{1/2}.$$

If $r_{12} = 0.75$ and $r_{13} = -0.75$, then obtain the limits of r_{23} .

P.T.O.