- 7. Write short notes on the following :
 - (i) Two person zero sum game.
 - (ii) Canonical and standard form of linear programming.
 - (iii) Primal-dual relationship and optimal primal solution from dual. (5,5,5)

[This question paper contains 8 printed pages.]

Your Roll No.....

G

Sr. No. of Question Paper: 4610

Unique Paper Code

Name of the Paper

Name of the Course

Semester

Duration : 3 Hours

: Operational Research

: 32377907

: B.Sc. (H) STATISTICS – DSE

Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

: V

- 2. Attempt any five questions.
- 3. Use of non-programmable simple scientific calculator is allowed.
- (a) The manager of an oil refinery must decide on the optimum mix of 2 possible blending processes of which the inputs and outputs production runs are as follows :

(1000)

	In	put	Output		
Process	Crude A	Crude B	Gasoline X	Gasoline Y	
1	6	4	6	9	
2	5	6	5	5	

The maximum amount available of crude oil A and B are 250 units and 200 units, respectively. Market demand shows that at least 150 units of gasoline X and 130 units of gasoline Y must be produced. The profit per production run from process 1 and 2 are Rs. 4 and Rs. 5, respectively. Formulate the problem for maximizing the profit. How much of each gasoline the refinery should produce in order to maximize its profit?

(b) Use penalty (or Big M) method to solve the following L.P.P.

Maximize $z = 6x_1 + 4x_2$

subject to the constraints

$$2x_{1} + 3x_{2} \le 30,$$

$$3x_{1} + 2x_{2} \le 24,$$

$$x_{1} + x_{2} \ge 3;$$

$$x_{1}, x_{2} \ge 0.$$
 (7.8)

6.

		Р	2	
	8	15	-4	-2
P ₁	19	15	17	16
	0	20	15	5

By notion of dominance, reduce the game to a 2×4 game and solve it graphically. (7,8)

- (a) Obtain an expression for the economic order quantity for an inventory model with finite rate of replenishment when shortages are not allowed.
- (b) The demand for an item in a company is 18,000 units per year and the company] can produce the items at a rate of 3,000 per month. The cost of one set-up is Rs. 500 and the holding cost of 1 unit per month is 15 paise. The shortage cost of one unit is Rs. 20 per month. Determine (i) Optimum production batch quantity and the number of strategies, (ii) Optimum cycle time and production time, (iii) Maximum inventory level in the cycle, and (iv) Total associated cost per year if the cost of the item is Rs. 20 per unit.

(7,8)

P.T.O.

Find the assignment of machinists to jobs that will result in maximum profit. Which job should be declined? (8,7)

5. (a) In a travel guide map a distance (in miles) from the hotel to all the places of tourist interest (T2 to T7) is given as below in the table. Draw the network flow diagram. Obtain the shortest route and shortest distance to tourist places T6 and T7 from the hotel for the tourist.

Nodes	Hotel	T2	T3	T4	T5	T6	T7 .
Hotel		5	3				
T2			1	5	2		-
T3				7			12
T4					3		3
T5						1	
T6				1			4

(b) The following payoff matrix represents the payoff to P_1 in a rectangular game between two persons P_1 and P_2 .

4610

M + 1

2. (a) Apply the principle of duality to solve the following L.P.P. :

Maximize $z = 3x_1 + 2x_2$

subject to the constraints

 $\begin{aligned} x_1 + x_2 &\geq -1, \\ x_1 + x_2 &\leq 7, \\ x_1 + 2x_2 &\leq 10, \\ x_2 &\leq 3; \\ x_1, x_2 &\geq 0. \end{aligned}$

(b) Consider the following L.P.P.: Maximize $z = 3x_1 + 5x_2$ subject to the constraints $x_1 \le 4$, $3x_1 + 2x_2 \le 18$; $x_1, x_2 \ge 0$.

The optimal solution to the above problem is given below :

Γ	Basis	XB	x ₁	x ₂	x ₃	X4
F	X3	4	1	0	1	0
T	x ₂	9	3/2	1	0	1/2
r	$z_j - c_j$	z=45	9/2	0	0	5/2

If a new variable x_5 is introduced with $c_5 = 7$ and $a_5 = [1, 2]$; discuss the effect of adding the new variable and obtained the revised solution, if any. (7,8)

3. (a) Solve the following transportation problem :

	D	D_2	D_3	D_4	a _i
O ₁	5	3	6	2	19
O ₂	4	7	9	1	37
O ₃	3	4	7	5	34
a	16	18	31	25	

(b) A car hire company has one car at each of five depots a, b, c, d and e. A customer in each of the five towns A, B, C, D and E requires a car. The distance (in miles) between the depots (origins) and the towns (destinations) where the customers are, is given an the following distance-matrix : 4

	а	b	с	d	e
- [160	130	175	190	200
	135	120	130	160	175
	140	110	155	170	185
	50	50	80	80	110
	55	35	70	80	105

5

How should the cars be assigned to the customers so as to minimize the distance travelled? (8,7)

4. (a) Find the optimum solution to the following transportation problem :

Factory -		Ware	house		- Capacity
	D	Е	F	G	Capacity
А	42	48	38	37	160
B	40	49	52	51	150
č	39	38	40	43	190
Demand	80	90	110	160	

(b) The owner of a machine shop has four machinists available to assign to jobs for the day. Five jobs are offered with expected profit for each machinist on each job as follows :

	Sales Territories					
		I	II	III	IV	V
Machinists	M	62	78	50	101	82
	M ₂	71	84	61	73	59
	Ma	87	92	111	71	81
	M ₄	48	64	87	77	80