851

- (c) Use the method of variation of parameters to find a particular solution of the differential equation : $y'' + y = \tan x \sec x.$ (7¹/₂)
- 5. (a) Find the general solution of the equation. $(x - y)y^2u_x + (x - y)x^2u_y = (x^2 + y^2)u \qquad (7\frac{1}{2})$
 - (b) Eliminate the constants a and b from the equation $2z = (ax + y)^2 + b$ (7¹/₂)
 - (c) Solve the initial value problem :

$$u_t + uu_t = x, \quad u(x, 0) = 1$$
 (7¹/₂)

(a) Find the general solution of the linear partial differential equation.

$$x(y^{2}-z^{2})u_{x} + y(z^{2}-x^{2})u_{y} + z(x^{2}-y^{2})u_{z} = 0$$
(7¹/₂)

(b) Use $v = \ln u$ and v = f(x) + g(y) to solve the equation.

$$x^2 u_x^2 + y^2 u_y^2 = u^2$$
 (7¹/₂)

(c) Reduce the equation: $x^2 u_{xx} + 2x u_{xy} + y^2 u_{yy} = 0$ to canonical form and hence find the general solution. (7¹/₂) [This question paper contains 4 printed pages.]

		Your Koll No		
Sr. No.	. of Question Paper	:	851	G
Unique	e Paper Code	:	2352572301	
Name	of the Paper	:	Differential Eq	uations
Name	of the Course	:	B.Sc. (Physical Mathematical Operational R Bachelor of Ar	Science) with Research and
Semest	ter	:	III	
Duration : 3 Hours		Maximum Marks : 90		
Instructions for Candidates				
	Write your Roll No. on the top immediately on receipt of this question paper.			
	Attempt all questions by selecting two parts form each question.			

D. 11 M

- 3. All questions carry equal marks.
- 1. (a) Find the general solution of the Bernoulli equation given by $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$ with initial condition y(1) = 2. Also find an integrating factor for the linear differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{2x+1}{x}\right)y = e^{-2x}.$$
(7¹/₂)

(1000)

P.T.O.

851

(b) Find the general solution of the differential equation $(x^2 - 3y^2)dx + 2xy dy = 0$ by showing it's a homogeneous equation. Also show that M(tx, ty)

=
$$tM(x, y)$$
 for $M = y + \sqrt{x^2 + y^2}$. (7¹/₂)

- (c) Determine the most general N(x,y) for the equation $(x^{-2}y^{-2} + xy^{-3})dx + N(x, y)dy = 0$ such that the equation is exact and solve the resulting exact equation. (7¹/₂)
- (a) Assume that the population of a certain city increase at a rate proportional to the number of inhabitants at any time, if the population doubles in 40 years, in how many years will it triple?
 - (b) Show that the relation $x^2 + y^2 25 = 0$ is an implicit solution of the differential equation

 $x + y \frac{dy}{dx} = 0 \text{ on the interval} - 5 < x < 5. \text{ Explain}$ whether the relation $x^2 + y^2 + 25$ is also an implicit solution of $x + y \frac{dy}{dx} = 0.$ (7¹/₂)

(c) Find the particular solution of the linear system that satisfies the stated initial conditions :

3

$$\frac{dy_1}{dt} = y_1 + y_2, \ y_1(0) = 1$$

$$\frac{dy_2}{dt} = 4y_1 + y_2, \ y_2(0) = 6.$$
 (7¹/₂)

. (a) Solve the initial value problem :

$$x^2y'' + 3xy' + y = 0, y(1) = 4, y'(1) = -1.$$
 (7¹/₂)

(b) Find a homogeneous linear ordinary differential equation for which two functions x^{-3} and x^{-3} ln x (x > 0) are solutions. Show also linear independence by considering their Wronskian.

 $(7\frac{1}{2})$

(c) Consider the initial value problem :

$$\frac{dy}{dx} = 1 + y^2, \ y(0) = 0.$$

Examine the existence and uniqueness of solution in the rectangle : |x| < 5, |y| < 3. (7¹/₂)

- 4. (a) Find a general solution of the following nonhomogeneous differential equation : $y'' + 4y' + 4y = e^{-2x} \sin 2x.$ (7¹/₂)
 - (b) Use the method of undetermined coefficients to find the particular solution of the differential equation :

$$y'' - 2y' + y = x^2 + e^x.$$
 (7¹/₂)

P.T.O.