3
(c) (i) Show that |ff:nxzcosg(ex) dxl < 16_3”__

(i1) Give an example of a function f on [0, 1] that is not integrable for which |f]is  integrable on
[0, 11.

(d) Suppose that f and g are continuous functions on [a, b] such that f; fdx = f; g dx. Prove that
there exists x in [a, b] such that f(x) = g(x).
4. (a) If f and g are two integrable functions on [a, b], then prove that (f + g) is also integrable on [a, b].

(b) Prove that every piecewise monotonically increasing function on [a, b] is integrable on [a, b].

(¢) State Fundamental Theorem of Calculus-II. Hence or otherwise evaluate lim,, _, 0% f:m et” dt.

(d) Let f bedefinedon R as

t for t < 0
ft)=4t*+1  for 0 <t <2
0 for > 2.

Determine the function F(x) = f; f(t) dt.
{i) At what points F is continuous?
(i) At what points F is differentiable? Calculate F' at the points of differentiability.

5. (a) Find the volume of the solid generated when the region under the curve y = x2 over the interval
[0, 2] is rotated about the line y = - i. '

(b) Use cylindrical shells to find the volume of the solid generated when the region enclosed between
y=+vx,x=4, x=9and the x-axis is revolved about the y-axis.

o

(¢) Find the exact arc length of the curve y = x5 from x=1to x = 8§,

(d) The circle x2 4+ y% = r? is rotated about the x-axis to obtain a sphere. Find the surface area of the
sphere. ‘ '

6. (a) Discuss the convergence of following improper integrals:

. 11 .. o dx
() fO xInx dx (1) fl )/x3+x'

tb) Find a function f such that floc f converges, but [ 100 v’}? does not converge. Justify your answer.
(c) Show that the improper integral | 01 tP~1(1 —t)971 dt converges if and only if p and g

are positive.

(d) Show that -
@ T+)=pIl({P) forall p>0,
(i) T@=(@m-1) forall neN.
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1. (a) Let f:[—1,1] = R be defined as follows: P //_, e
(2, ifxeqQ &
fx) = {3,‘ ifxgQ j |
Show that f is not integrable on [-1,1]. : N iy \\

(b) Let f:[a,b] » R be a bounded function. Show that if f is integrable on [a, b], then for each &
> 0, there exists a & > 0 such that U(f,P) — L(f,P) <& for every partition P of [a,b] with
mesh(P) < 6.

(c) Let f(x) = 3x + 2 over the interval [1,3]. Let P be a partition of [1,3] given by P=
{1,3/2,2,3}. Compute L(f, P), U(f, P) and U(f, P) — L(f, P).

(d) Let f:[a,b] » R be a bounded function. Show that if P and Q are any partitions of [a, b], then
L(f,P) < U(f, Q). Hence show that L(f) < U(f).

(e)
2. (a) Prove that a bounded function f is integrable on [a,b] if and only if there exists a sequence of
partitions (P)nen of [a, b], satisfying lim[U(f, B,) — L(f,P,)] = 0.
(b) Suppose that a function f defined on [a, b] is integrable on [a,c] and [c,b], where ¢ € (a, b).
Prove that f is integrable on [a, b] and that f; i = f: f+ fcb f.

(¢) Let f:[a,b] » R be a bounded function. Show that if f is Riemann integrable on [a, b], then it is
(Darboux) integrable on [a, b], and that the values of the integrals agree.

0 fort <1/3
1 fort=>1/3.

Let f(x) = x2, where x € [0,1]. Show that f is F-integrable and that folf dF = f(1/3).

(d) Fort € [0,1], let F(t) = {

3. (a) Prove that every continuous function on [a, b] is integrable on [a, b].

(b) State and prove the Intermediate Value Theorem for Integrals.



