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(c) Let V and W be vector spaces. Let T: 'V —> W be
linear and let {w,, w,,....,w,} be a linearly
independent subset of Range of T. Prove that if
B = I¥s Vipguns
i=1, ....,k. Then S is linearly independent.

(6.5)

v,} is chosen so that T(v) = w, for

(a) Let T be a linear operator on a finite dimensional
vector space V. Let B and P’ be the ordered basis
for V. Suppose that Q is the change of coordinate
matrix that changes B’ coordinates into f
coordinates, then [T], = Q '[T]ﬁQ. (6.5)

(b) Let B, y be the standard ordered basis of P (R)
and R? respectively.
Let T: P (R) — R? be a linear transformation
defined by T(a+ bx) = (a, atb).
Find [T]Y= [T_l]ﬁ and verify that [Til]ﬁ :([T]V )_l.
p . : b
(6.5)
(c) Let U: P,(R) — P,(R) and T: P,(R) — P,(R) be

the linear transformations respectively defined by
U(f(x)) = f'(x) and T(f(x))= j(’ f(t) dt. Prove that

[UT]ﬁ=[U]i[T]§ where o and P are standard

ordered basis of P,(R) and P,(R) respectively.
(6.5)

(1000)
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(a) Prove that every finite Integral domain is a field.
Give an example of an infinite integral domain
which is not a field, Justify. (6)

(b) (i) Let F be a field of order 2". Prove that the
characteristic of F is 2.

(i) Find all the units in Z[i] (6)

(c) Prove that the set of all the nilpotent elements of
a commutative ring form a subring. (6)
P.T.O.
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2. (a) Let R be a commutative ring with unity and A be
an ideal of R then prove that R/A is an integral
domain if and only if A is a prime ideal of R.

(6)
(b) Prove that Z[i]/<] —i> is a field. (6)
(c) Find all the maximal ideals of 7Z,,. (6)

3. (a) Find all the ring homomorphisms from Z, to Z .

(6.5)
(b) Let R:{[‘; j

a b
that takes [0 J to a. Show that

a,b,ceZ} and ® be the mapping

(i) @ is a ring homomorphism
(i1) Determine the kernel of ®.
(iii) Is ® a one-one mapping. Justify.  (6.3)

(c) State and prove first isomorphism theorem for
rings. (6.5)

4. (a) Let V(F) be a vector space.

(i) Prove that the intersection of two
subspaces of V(F) is also a subspace of
V(F).

(if) Show that union of two subspaces of V(F)
may not be a subspace of V(F). Discuss
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the condition under which union of two
subspaces will also form a subspace of
V(F). (6)

(b) Let S be a linearly independent subset of a vector
space V(F), and let v be a vector in V that is
not in S. Then S U {v} is linearly dependent iff
v € Span (S). (6)

(c) Let u, v, w be distinct vectors of a vector space
V. Show that if {u,v,w} is a basis for V, then

{utv+tw, v+tw, w} is also a basis for V. (6)

5. (a) Let V(F) and W(F) be vector spaces and let
T: V>W be a linear transformation. If V is a
finite-dimensional, then

Dim (V) = Nullity (T) + Rank (T). (6.5)

(b) Let T: R?—> R?and U: R2 - R? be the linear
transformations respectively defined by
Tia a,) = (a;+ 3a,, 0, 2a,—4a,)
U(a; a,) = (a, - a,,
Let B, y be the standard basis of R? and R3

respectively, Prove that

2a;, 3a,+2a)

(@) [T+UJg+[T]S+[U];
(ii) [aT];=a[T]{ for all scalars a. (6.5)

P.T.O.



