3116

- 4
- (c) Let V and W be vector spaces. Let T: $V \rightarrow W$ be linear and let $\{w_1, w_2, ..., w_k\}$ be a linearly independent subset of Range of T. Prove that if $S = \{v_1, v_2, ..., v_k\}$ is chosen so that $T(v_i) = w_i$ for i = 1, ..., k. Then S is linearly independent.

(6.5)

()

- 6. (a) Let T be a linear operator on a finite dimensional vector space V. Let β and β' be the ordered basis for V. Suppose that Q is the change of coordinate matrix that changes β' coordinates into β coordinates, then $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$. (6.5)
 - (b) Let β , γ be the standard ordered basis of $P_1(\mathbb{R})$ and \mathbb{R}^2 respectively.

Let T: $P_1(\mathbb{R}) \to \mathbb{R}^2$ be a linear transformation defined by T(a + bx) = (a, a+b).

Find
$$[T]_{\beta}^{\gamma}$$
, $[T^{-1}]_{\gamma}^{\beta}$ and verify that $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$.
(6.5)

(c) Let U: P₃(ℝ) → P₂(ℝ) and T: P₂(ℝ) → P₃(ℝ) be
the linear transformations respectively defined by
U(f(x)) = f'(x) and T(f(x))= ∫₀^x f(t) dt. Prove that
[UT]_β = [U]^β_α[T]^α_β where α and β are standard ordered basis of P₃(ℝ) and P₂(ℝ) respectively.

[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	3116 H
Unique Paper Code	:	32351403
Name of the Paper	:	Ring Theory & Linear Algebra- I
Name of the Course	:	B.Sc. (Hons.) Mathematics CBCS (LOCF)
Semester	2	IV
Duration : 3 Hours		Maximum Marks: 75

Your Roll No

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question.
- (a) Prove that every finite Integral domain is a field. Give an example of an infinite integral domain which is not a field, Justify.
 (6)
 - (b) (i) Let F be a field of order 2ⁿ. Prove that the characteristic of F is 2.
 - (ii) Find all the units in $\mathbb{Z}[i]$ (6)
 - (c) Prove that the set of all the nilpotent elements of a commutative ring form a subring.(6)

- (a) Let R be a commutative ring with unity and A be an ideal of R then prove that R/A is an integral domain if and only if A is a prime ideal of R.

(6)

(6)

)

)

- (b) Prove that $\mathbb{Z}[i]/\langle 1-i \rangle$ is a field. (6)
- (c) Find all the maximal ideals of \mathbb{Z}_{20} .
- 3. (a) Find all the ring homomorphisms from \mathbb{Z}_4 to \mathbb{Z}_{10} . (6.5)
 - (b) Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Z} \right\}$ and Φ be the mapping that takes $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ to a. Show that
 - (i) Φ is a ring homomorphism
 - (ii) Determine the kernel of Φ .
 - (iii) Is Φ a one-one mapping. Justify. (6.5)
 - (c) State and prove first isomorphism theorem for rings.(6.5)
- 4. (a) Let V(F) be a vector space.
 - (i) Prove that the intersection of two subspaces of V(F) is also a subspace of V(F).
 - (ii) Show that union of two subspaces of V(F) may not be a subspace of V(F). Discuss

 \bigcirc

)

- the condition under which union of two subspaces will also form a subspace of V(F). (6)
- (b) Let S be a linearly independent subset of a vector space V(F), and let v be a vector in V that is not in S. Then S ∪ {v} is linearly dependent iff v ∈ Span (S).
- (c) Let u, v, w be distinct vectors of a vector space
 V. Show that if {u,v,w} is a basis for V, then
 {u+v+w, v+w, w} is also a basis for V. (6)
- 5. (a) Let V(F) and W(F) be vector spaces and let
 T: V→W be a linear transformation. If V is a finite-dimensional, then

Dim(V) = Nullity(T) + Rank(T). (6.5)

(b) Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ and U: $\mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformations respectively defined by

T(a₁, a₂) = (a₁ + 3a₂, 0, 2a₁ - 4a₂) U(a₁, a₂) = (a₁ - a₂, 2a₁, 3a₁ + 2a₂) Let β , γ be the standard basis of \mathbb{R}^2 and \mathbb{R}^3 respectively, Prove that

(i) $[T + U]^{\gamma}_{\beta} + [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$ (ii) $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a. (6.5)

P.T.O.