[This question paper contains 4 printed pages.]

(b) Represent the function $f(z) = \frac{z+1}{z-1}$.

(i) by its Maclaurin series and state the domain where the representation is valid.

- (ii) by its Laurent series in the domain $1 < |z| < \infty$. (3+3.5)
- (c) Find the residue at z = 0 of the functions :

(i) $\frac{1}{z+z^2}$ (ii) $z \cos(1/z)$ (3+3.5)

- 6. (a) State Cauchy Residue Theorem and use it to evaluate the integral of $\frac{1}{1+z^2}$ around the circle |z| = 2 in the positive sense. (7)
 - (b) Show that the point z = 0 is a pole of the function $z(e^{z} 1)$. Also find order of the pole and corresponding residue. (7)
 - (c) In each case, write the principal part of the func on at its isolated singular point and determine the type of singular point with full explanation :

(i)
$$e^{1/z}$$
 (ii) $\frac{z^2}{1+z}$ (3.5+3.5)

(2000)

Sr. No. of Question Paper	:	2933 H
Unique Paper Code	:	32351601
Name of the Paper	:	Complex Analysis (including Practicals)
Name of the Course	:	B.Sc. (H) Mathematics
Semester	:	VI
Duration : 3 Hours		Maximum Marks : 75

Your Roll No.....

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Each question consists of three parts. Attempt any two parts from each question.
- 1. (a) (i) Find and sketch, showing corresponding orientations, the image of the aspectola $x^2 - y^2 = c_1 (c_1 < 0)$ under the transformation $w = z^2$.
 - (ii) Suppose $(z) = \begin{cases} z/|z| & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$. Check the continuity of f at z = 0. Justify your answer.

(4+2=6)

P.T.O.

2933

2933

2

- (b) (i) Determine the points where f(z) = (x³ + 3xy² x) + i(y³ + 3x²y y) is differentiable. Is f analytic at those points? Justify your answer.
 - (ii) Suppose f(z) is analytic. Can $g(z) = \overline{f(z)}$ be analytic? Justify your answer. (4+2=6)
- (c) (i) Suppose f(z) = e^{-x}e^{-iy}. Show that f'(z) and f"(z) exist everywhere. Hence prove that f"(z) = f(z).
 - (ii) Show that $\log(i^{1/2}) = (1/2) \log i$. (3.5+2.5=6)
- 2. (a) (i) Find all the roots of the equation sin z = 5.
 (ii) Show that |exp(z²)| ≤ exp(|z²|). (4+2=6)
 - (b) (i) Show that $\sin \overline{z}$ is not analytic function anywhere.
 - (ii) Compute $\lim_{z \to \infty} \frac{2z^3 1}{z^2 + 1}$. (5+1=6)
 - (c) Evaluate $\int_C \frac{dz}{z}$, where C is a positively oriented circle $z = 2e^{i\theta}$ ($-\pi \le \theta \le \pi$). (6)
- 3. (a) Let $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1 + i and i; orientation of C being in the anticlockwise direction. Parametrize the curve C and evaluate $\int_C f(z) dz$. (6)

2933

 \mathbf{O}

- (b) Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is a non-negative constant such that $|f(z)| \le M$ for all points z on C at which f(z) is defined, then prove that $\left| \int_{C} f(z) dz \right| \le ML$. (6)
- (c) If a function f is analytic at a given point, then prove that its derivatives of all orders are analytic there too. (6)
- 4. (a) State Cauchy integral formula and its extension. Evaluate $\oint_C \frac{z+1}{z^4+2iz^3} dz$, where C is the circle |z| = 1. (6)
 - (b) Show that if f is analytic within and on a simple closed contour C and z_0 is not on C, then

$$\int_{C} \frac{f'(z)}{z - z_0} dz = \int_{C} \frac{f(z)}{(z - z_0)^2} dz$$
(6)

(c) State and prove Fundamental theorem of Algebra.

5. (a) Find limit of the following sequences as $n \to \infty$:

(i)
$$z_n = \frac{1}{n^3} + i$$
 (n = 1,2,...)
(ii) $w_n = -2 + i \frac{(-1)^n}{n^2}$ (n = 1,2,...) (3+3.5)

P.T.O.