.

1066

8

7. (a) If the random variables X_i (i = 1,2,3,4) are independently and identically distributed with probability density function

$$f(x) = \frac{1}{\sqrt{72\pi}} \exp\left[-\frac{(\mu+7)^2}{72}\right], \quad -\infty < x < \infty$$

then obtain the probability density function of $U = \frac{1}{4} \sum_{i=1}^{4} (x_i)$ and $V = X_1 - 2X_2 + 3X_3 - 4X_4$.

- (b) If X and Y are independent variates such that $x \sim N(6,9)$ and $Y \sim N(7,16)$ then, determine λ such that $P(2X + Y \le \lambda) = P(4X - 3Y \le \lambda)$.
 - (6,6)
- 8. (a) Find the probabilities that the value of a random variable will exceed 4 if it has a gamma distribution with (i) α = 2 and β = 3; (ii) α = 3 and β = 4.
 - (b) Show that the parameters of the beta distribution can be expressed as follows in terms of the mean and the variance of this distribution :

$$\alpha = \mu \left[\frac{\mu (1 - \mu)}{\sigma^2} - 1 \right]$$

$$\beta = (1-\mu) \left[\frac{\mu(1-\mu)}{\sigma^2} - 1 \right] \tag{6,6}$$

[This question paper contains 8 printed pages.]

		Your Roll No
Sr. No. of Question P	aper :	1066 H
Unique Paper Code	; :	32375201
) Name of the Paper	:	Introductory Probability (GE- II)
Name of the Course	:	Generic Elective in Statistics
Semester	:	II
Duration : 3 Hours		Maximum Marks : 75

nh (FVP)

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Section I is compulsory.
- 3. Attempt any five questions, selecting at least two questions from each of the Sections II and III.
- 4. Use of simple calculator is allowed.

Section – I

1. (a) Define axiomatic probability.

- (b) If P(A) = 0.4, P(B) = 0.5, and $P(A \cap B) = 0.3$, then find P(A|B) and P(B|A).
- (c) Consider a random variable X having probability

mass function $f(x) = \frac{x}{10}$ for x = 1,2,3,4. Find the mean of X.

mean or m.

(d) If $X_n \xrightarrow{p} \alpha$ and $Y_n \xrightarrow{p} \beta$ as $n \to \infty$ then

- (i) $X_n \pm Y_n \xrightarrow{p}$ as $n \to \infty$ and
- (ii) $X_n Y_n \xrightarrow{p}$ as $n \to \infty$.
- (e) If $M_x(t)$ is the m.g.f of a random variable X, then $M_{x+a}(t) = \underline{\qquad}$ and $M_{bx}(t) = \underline{\qquad}$, where a and b are constants.
- (f) For each of the following, determine whether the given function can serve as the probability distribution of a random variable with the given range :

1066

- (i) If he fires 7 times, what is the probability of his hitting the target at least twice?
- (ii) How many times must he fire so that the probability of his hitting the target at least
 - once is greater than $\frac{2}{3}$.
- (c) Suppose that X has Poisson distribution. If $P(X = 2) = \frac{2}{3}P(X = 1)$, evaluate P(X = 0) and P(X = 3). (4,4,4)
- 6. (a) Suppose X has the geometric distribution with p.m.f. $f(x) = q^{x-1} p$, x = 1,2,3,... then, show that

the moment generating function is $M_x(t) = -\frac{pe^t}{1-qe^t}$.

Also, find $M'_{x}(0)$ and $M''_{x}(0)$. Hence, compute the mean and variance of random variable X.

(b) Let X have the pdf f(x) = e^{-x-1}, -1 < x < ∞. Find (X ≥ 1), and show that the moment generating function is given by M_x(t) = e^t(1 - t)⁻¹. Also, find M'_x(0) and M"_x(0). Hence, compute the mean and variance of the random variable X. (6,6)

P.T.O.

6

defective. What is the probability that it comes from the output (i) Machine I, (ii) Machine II, and (iii) Machine III?

- (b) Let X be a continuous random variable with pdf
 - $f(x) = \begin{cases} ax, & 0 \le x \le 1\\ a, & 1 \le x \le 2\\ -ax + 3a, & 2 \le x \le 3\\ 0, & elsewhere \end{cases}$
 - (i) Determine the constant a,
 - (ii) Determine F(x), the cdf, and sketch its graph.(6,6)

Section - III

5. (a) The p.d.f. of the random variable X is given by

$$f(x) = = \begin{cases} \frac{c}{\sqrt{x}}, & \text{for } 0 < x < 4\\ 0, & \text{elsewhere} \end{cases}$$

Find,

(i) the value of c.

- (ii) $P\left(X < \frac{1}{4}\right)$ and P(X > 1).
- (b) The probability of a man hitting a target is $\frac{1}{4}$.

)

()

(i)
$$f(x) = \frac{x-2}{5}$$
 for $x = 1,2,3,4,5$.
(ii) $f(x) = \frac{x^2}{30}$ for $x = 0,1,2,3,4$.

- (g) If X and Y are independent r.v.s with $\mu_x = 3$, $\mu_y = 5$, $\sigma_x^2 = 8$ and $\sigma_Y^2 = 12$, then obtain mean and variance of U = X + 3Y.
- (h) If X has the probability density $f(x) = e^x$ for x > 0and 0, elsewhere, then find the expected value of $g(x) = e^{3X/4}$.
- (i) Let μ and σ^2 denote the mean and variance of the

random variable X. Determine $E\left(\frac{X-\mu}{\sigma}\right)$ and

 $E\left(\frac{X-\mu}{\sigma}\right)^2$.

 (j) Subway trains on a certain line run every half hour between midnight and six in the morning. What is the probability that a man entering the station at a random time during this period will have to wait at least 20 minutes? (1×5,2×5)

P.T.O.

Section – II

 (a) A random variable X has the following probability mass function.

x	0	1	2	3	4	5	6	7	
p(x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k ²	$2k^2$	$7k^2 + k$	
1		(i) Fi	nd k.						1
		(ii) Ev	aluate	e P(X	< 6).				
		(iii) If	P(X :	≤ a) >	$\frac{1}{2}$, t	hen fi	nd the	minimum	i)
		va	alue o	fa.					
(h) A	contin	uous	rando	m var	iable	X has	the p.d.f.	

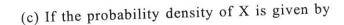
- (b) A continuous random variable X has the plant $f(x) = 3x^2$, $0 \le x \le 1$. Find a and b such that (i) $P(X \le a) = P(X > a)$, and (ii) P(X > b) = 0.05.
- (c) If X is the number scored in a throw of a fair die, show that the Chebychev's inequality gives $P\{|x \mu| > 2.5\} < 0.47$, where μ is the mean of X, while the actual probability is zero.

(4,4,4)

)

3. (a) A coin is tossed three times, and the outcomes are assumed to be equally likely. If A is the event that a head occurs on each of the first two tosses, B is the event that a tail occurs on the third toss, and C is the event that exactly two tails occur in the three tosses, show that (i) events A and B are independent; (ii) events B and C are dependent.

- 5
- (b) Show that if a random variable has an exponential density with the parameter θ , the probability that it will take a value less than $-\theta \ln(1-p)$ is equal to p for $0 \le p < 1$.



	$\left\{\frac{\mathbf{x}}{2},\right.$	$0 < x \leq 1$
f(x) =	$\left \frac{1}{2}\right $	$1 < x \le 2$
	$\left \frac{3-x}{2}\right $	$2 \le x < 3$
	$\begin{bmatrix} 2\\0\ \end{bmatrix}$	elsewhere

Find the expected value of $g(X) = X^2 - 5X + 3$. (4,4,4)

 (a) A factory produces a certain type of output by three types of machines. The respective daily produce figures are:

> Machine I: 3,000 Units, Machines II: 2,500, Machine III: 4,500 Units.

Past experience shows that 1% of the output produced by machine I is defective. The fractions of defective for the other two Machines are 1.2% and 2% respectively. An item is drawn at random from the day's production run and is found to be