8

 (c) Transform the following game problem involving 'two-person zero sum game into its equivalent pair of linear programming problems for player A and player B

 Player B

 1
 5
 -2

 4
 1
 -3

 2
 -1
 2

the button of the second of the

[This question paper contains 8 printed pages.]

Your Roll No.....

Maximum Matks

2354002004

: Linear Programming

H

Sr. No. of Question Paper: 5874

Unique Paper Code

Name of the Paper

Name of the Course

Duration : 3 Hours

Semester

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all question by selecting two parts from each question.

: GE

: IV

3. All questions carry equal marks.

4. Use of Calculator is not allowed.

1. (a) Solve graphically :

 $\begin{array}{ll} \text{Minimize } z = 2x_1 - 3x_2\\ \text{subject to} & x_1 + x_2 \leq 5\\ & 2x_1 + x_2 \geq 4\\ & x_2 \leq 2 \end{array}$

 $x_1, x_2 \ge 0$

(2000)

5874

2

- (b) Find all basic feasible solution of the following system of equations :
 - $2x_1 + x_2 2x_3 = 2$
 - $3x_1 2x_2 + 4x_3 = 10.$
- (c) Show that the set S = $\{(x,y) \in \mathbb{R}^2 : x^2 + 2y^2 \le 4\}$ is a convex set.
- 2. (a) Solve the following linear programming problem:
 - Maximize $z = 2x_1 + 5x_2 3x_3$

subject to $x_1 + 2x_2 - x_3 \le 6$

 $\begin{array}{rcl}
1 & 2 & 3 \\
2x_1 - x_2 + x_3 \leq 12 \\
x_1 + x_2 + x_3 \leq 4
\end{array}$

$$x_1, x_2, x_3 \ge 0$$

(b) Solve the following linear programming problem :

Maximize
$$z = 2x_1 + 4x_2 - 3x_3$$

subject to
 $2x_1 + x_2 \le 4$
 $3x_1 + x_2 + 4x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

5874

7

- Player B

 Player A

 $\begin{bmatrix}
 1 & 4 & -7 & 2 \\
 5 & 3 & 2 & x \\
 -1 & 0 & y & 8
 \end{bmatrix}$
- 6. (a) Find saddle points, if any, for the following game with pay-off matrix :

Player II Player I $\begin{bmatrix} 4 & 1 \\ -2 & 3 \end{bmatrix}$

Hence, or otherwise solve the game.

(b) Solve the following game using Principle of Dominance :

5874

 (a) Solve the given Assignment Problem to Maximize the Sales :

6	I	п	Ш	IV
A	50	40	60	45
B	35	50	45	40
C	40	60	50	35
D	45	45	60	70

(b) Consider a game with following pay-off matrix :

Player B Player A $\begin{bmatrix} 5 & 0 & -3 \\ 3 & 1 & 2 \\ -4 & -2 & 6 \end{bmatrix}$

Determine the saddle points, the best strategies for each player, and the value of game.

(c) Define saddle point of a game whose pay-off matrix is $A = (a_{ij})_{m \times n}$. Find the range of x and y such that the cell (2, 3) is a saddle point of the game whose pay-off matrix is (c) Using Simplex method, solve the following linear programming problem :

3

Minimize z	$= -\mathbf{x}_1 + 3\mathbf{x}_2$
subject to	$\mathbf{x}_1 + 2\mathbf{x}_2 \ge 3$
1	$2x_1 - 3x_2 \ge -6$
	$\mathbf{x}_1 \leq 2$
	$\mathbf{x}_1, \ \mathbf{x}_2 \ge 0.$

(a) Using simplex method, show that the following linear programming has no solution

Maximize $z = 4x_1 + x_2$ subject to $2x_1 + 3x_2 \ge 12$ $x_1 + x_2 \le 3$ $3x_1 + x_2 \le 6$

- $\mathbf{x}_1, \ \mathbf{x}_2 \ge \mathbf{0}.$
- (b) Write the dual of the following linear programming problem :

P.T.O.

- Minimize $z = x_1 + 3x_2 + 5x_3$ $-2x_1 + x_2 + 3x_3 \ge 5$ subject to $3x_1 + 2x_3 \le 4$
 - $x_1 \le 0$, x_2 unrestricted in sign, $x_3 \ge 0$.
- (c) Show that the Dual of the Dual of MIN-problem is the MIN-problem itself.

 $x_1 + 2x_2 + x_3 = 6$

- (a) Find an Initial basic feasible solution of the 4. following cost minimization Transportation problem :
 - (i) Using North West Comer Rule
 - (ii) Using Matrix Minima/Least Cost Method

	D1	D ₂	D ₃	D4	Supply
01	5	4	3	5.	50
02	6	7	7	6	70
03	9	8	8	9	80
Demand	60	50	40	50	

- 5
- (b) Find an initial basic feasible of the following cost minimization transportation problem using Vogel's Approximation Method and further find the optimal solution using MODI Algorithm.

	D ₁	D ₂	D ₃	D4	Supply
01	2	4	5	1	20
02	7	3	4	6	15
03	5	1	6	1	25
Demand	10	20	25	5	and the second second

(c) Solve the following Cost Minimisation Assignment Problem of assigning Jobs to Machines :

and the local data	-	-
	10.0	11.1
100000	1000	
L		

Machines

	J1'	J2	J ₃]4	15
M ₁	11	6	14	16	17
M ₂	7	13	22	7	10
M3	10	7	3	2	2
M4	4	10	8	6	11
Ms	13	15	16	10	18

Jobs