[This question paper contains 16 printed pages.]

and the stand of the stand

		Your Roll No
Sr. No. of Question Paper	:	5120 G
Unique Paper Code	:	12273303
Name of the Paper	:	Data Analysis
Name of the Course	:	B.A. (H) Economics – SEC
Semester	:	III ananujan College Lib
Duration : 3 Hour		Maximum Marks : 65
Instructions for Candidate	es	New Dolhi-110019

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. This question paper has two sections. Attempt any TWO questions from each section.
- 3. You do not require the use of R or Excel software to answer any question. Wherever asked, mention/discuss the command/function/syntax, as required in the question.
- 4. The questions in which R or Excel is not mentioned, the answers should be based on your own calculations.
- 5. Use of a simple non-programmable calculator is allowed.
- 6. Statistical tables are attached for your reference.

SECTION A

 (a) The Principal at a college emailed a survey to a total of 300 students. The sample included 100 students randomly selected from each of the first y ear, second year, and third year of the college. (i) What type of sampling method was used?

(ii) Explain why the sampling method stated in (i) is the most efficient method.

(2)

(3)

- (iii) How is the sampling method described above different from non-probability sampling? Explain. (5)
- (b) Differentiate between excel functions RAND() and RANDBETWEEN().
- (c) Explain rep() command in R using an example. (3)
- (a) The following data represents the stress score and life satisfaction score collected from a sample of 10 participants :

Stress Score	Life satisfaction score
11	7
25	1
19	4
7	9
23	2
6	8
11	8
22	3
25	3
10	6

2

3

Using this data, answer the following questions :

- (i) Compute sample correlation coefficient between the stress scores and life satisfaction scores. Comment on the correlation between the two.
- (ii) Calculate the Z scores of stress scores. Are there any outliers?
- (b) Explain data frame with the help of an example, in R. (3)
- (c) Suppose 10 numbers are given in Excel from the cell A1 to A10. Explain the excel function to calculate mean of these 10 numbers. (3)

(a) Using examples, elaborate the methods used to organise categorical variables.
 (5)

- (b) Discuss the challenges faced in organizing and visualizing variables. (5)
- (c) Explain the use of filter in Excel. (3)
- (d) Write R commands for rolling a six-sided fair dice. (3)

SECTION B

4. (a) Answer the following questions :

- (i) A coin is tossed at random 400 times and heads turn up 240 times. Can the coin be regarded as unbiased? Use 5% level of significance.
- (ii) How will the result in (i) be affected if the observed number of heads is 216? Use 5% level of significance. (2)
- (b) Two random samples of sizes 8 and 11, drawn from two normal populations, are characterized as follows :

Population from which sample is drawn	Sample Size	Sum of Observations	Sum of squares of observations	
Ι	8	9.6	61.52	
II	11	16.5	73.26	

You are to decide if the two populations can be taken to have the same variance. Which test function would you use? How is it distributed? Test the above hypothesis at 5% level of significance. (6)

(c) Explain the difference between getwd() and setwdQ commands in R.

(4.5)

5120

5120

(a) A manufacturing company wants to estimate the average amount of purchase of its product in a month by the customers. If the standard deviation is Rs. 10, find the sample size if the maximum error is not to exceed Rs. 3 with a confidence level of 99%. How will the sample size change if the confidence level changes to 90%?

5

(b) The data for number of days present per week for a population of three employees, namely, Rishi, Radhika and Shanti of an organization is given below :

Employee	Number of Days
Rishi	5
Radhika	6
Shanti	4

Suppose you select samples of two administrative assistants *with* replacement from this population. Calculate the sampling distribution of sample mean. Compare it with the population mean number of days present. Are the two equal? Why or why not?

(6)

(c) Explain the use of the following R commands: read.csv and read.table.

(4.5)

 6. (a) A study is conducted to see if wages of daily workers in North and South India differ from each other. Results for two-sample t-tests, assuming equal variances, for wages, are given below :

Two Sample t Test Assur	ning Equal Variances	
The backful to the	North India South	India
N/	12	10
Mean	16	9
Variance		5
Observations	4	5
Pooled Variance	12	
Unothesized Mean Difference	0	
Hypolicsized Mean Difference	7	
dt	0.861	
t Stat	0.001	
P(T>=t) two tail	U.418	
D(T)=t) one tail	0.209	
F(1)-t) one and	3.496	
I CITUCAL LWO LALL AL 170	2,998	
T critical one tail at 1%	2.770	

- (i) State the null and alternative hypotheses to test if the average daily wage in North India differs from average daily wage in South India.
- (ii) At 1% level of significance, is there an evidence of difference in wages?
 Also test the hypothesis that average wages in North India are greater than those in South India.

5120

6

(iii)	Test the hypothesis stated in part (ii) again at 5% and 10% le	vel of
	significance using p-value approach.	(2)
	significance using p-value approach.	(2)

(b) Explain the use of Excel function : NORM.S.DIST (3.5)

7

(c) Explain the use of the following R command using example: ls() (3)

664 APPENDICES

2.3 3J8AT

The Cumulative Standardized Normal Distribution

Entry represents area under the cumulative standardized

Z al co-	mon nonudrisib	runoa

				the second	ssifidides	tive Proba	Cumula	Sector A		All All	
-	60.0	80.0	20.0	90'0	\$0'0	0.04	60.03	20.02	10.0	000	Z
							Alexandre de la		ing af	10000000000	0.9-
										61000000000	5'5-
										18200000000	0.2-
										8655000010	- C'+-
6	Strong O	Direction D	100000	10000	100000	10000	POLICIAN	10000	20000.0	1/01/00/000	01-
5	0000'0	£0000°0	±00000	£000010	£0000'0	\$0000'0	P0000.0	600000	20000.0	LUUUUJO	81-
0	00000	\$0000.0	c0000 0	000000	000000	000000	01000 0	010000	01000.0	11900'0	28-
1	1000.0	SUAMULU	\$0000.0	200000	600000	P10000	F1000 0	\$1000.0	\$1000.0	91000'0	98-
4	1000.0	21000.0	2100010	610000	61000.0	0200000	15000.0	22000.0	0.00022	0.00023	5.5-
Ŧ	100000	5000 9	900000	10000	820000	0.00029	0:00030	1£000.0	2£000.0	\$\$C000.0	4.5-
S	10000	95000.0	0.00038	6£000'0	0,00040	0.00042	0.00043	0.00045	74000.0	0,00048	5.5-
0	5000.0	25000.0	¢\$000%	9\$000.0	82000.0	09000'0	0.00062	£9000°0	99000.0	69000:0	-3.2
1	2000.0	£7000.0	9200010	62000.0	28000.0	48000.0	L8000.0	06000'0	†6000'0	£6000°0	1-3-1
0	0100.0	£0100.0	20100.0	11100.0	¢10000	0.00118	0.00122	0.00126	16100.0	0.00135	-3'0
	4100.0	4100.0	\$100.0	\$100.0	9100.0	9100'0	L100'0	8100.0	8100.0	6100-0	6'7-
	0.0019	0.0020	0.0021	1200.0	0.0022	0.0023	070053	0.0024	\$200.0	0*0056	8'2-
	9200.0	0.0027	0.0028	6700.0	0:0030	1:0000	0.0032	6,0033	0:0034	0*0032	L'Z-
	9500.0	LE00.0	8£00.0	6600.0	0100.0	1400.0	0.0043	0.0044	\$700.0	1400-0	-3'9
	8400.0	6+00.0	1500.0	0.0052	\$\$00.0	0.0055	6.0057	6\$0070	0900.0	0,0062	57-
	1900.0	9900'0	8900.0	6900'0	1200.0	6,0073	\$700.0	8200.0	0800.0	0,0082	-5'4
	7800'0	2800'0	6800'0	1600.0	\$600 0	9600'0	6600'0	Z010.0	\$010°0	2010.0	-5'3
	0110.0	0.0113	9110.0	6110'0	0.0122	5210.0	0.0129	0.0132	9610'0	6610.0	77-
	6+10.0	9710.0	0510.0	+\$10.0	8510.0	2910.0	9910.0	0210'0	t/10'0	6/10:0	172-
	\$810.0	8810.0	2610.0	4610.0	2020.0	L020.0	2120:0	2120'0	2220.0	\$220.0	0.2-
	6.620.0	6620'0	44Z0.0	0.0250	9520.0	2920.0	8920'0	\$1700	187070	(87010	61-
	t620'0	1050.0	1050.0	¢150'0	7750'0	6750'0	00000	ttere o	1000	5000	21-
	1950.0	\$/50'0	\$850.0	76500	10+0.0	60000	8190,0	(750'0	0640.0	8750-0	91-
	cetan	COPOLO	C/+0.0	C8+0.0	6640'0	61900	01,000	27900	10000	8990 0	51-
	6000	1/0900	78000	+6000	20000.0	0100.0	000000	8LL0 0	10100	8080 0	71-
•	19000	56000	2280.0	09800	56800	66100	81000	PEDUU	1500.0	8960.0	1 21-
	5800.0	5001 U	0.001.0	8201 0	1 0000	54010	10010	21110	IEII'0	1511.0	21-
	02110	00110	0701.0	OLCI O	15010	ILCI U	66610	71210	55510	2521.0	11-
4	OLLEO	06110	01710	97710	69710	0.1492	\$1\$10	6251.0	0.1562	12821.0	0.1-
	11910	52910	0991 0	5891.0	1121 0	91139	011205	8871.0	181.0	1+81.0	6.0-
	29810	76810	6661 0	6761.0	2261'0	0.2005	0.2033	0.2061	0.2090	6112.0	8:0-
	87120	11120	9022.0	95220	0,2266	0.2296	1252.0	8262.0	8852.0	0.2420	20-
	15770	0 5485	0.2514	97520	82520	1192.0	6492.0	9/92.0	6072,0	6472.0	9.0-
	9222.0	0.2810	0.2843	LL82.0	2162.0	0.2946	1862.0	\$105.0	0505,0	\$806.0	5.0-
	0.3121	9515.0	2616.0	8226.0	9.3264	0055.0	9555.0	2725.0	6048.0	9446.0	P.0-
	6.3483	0.3520	Tere.0	\$65£.0	2695.0	6995.0	1075.0	S\$45.0	£87£.0	1285.0	E.0-
	6285.0	7685.0	9666.0	4795.0	0.4013	0 +025	0.4090	6214.0	8914.0	0-4207	-0.2
	14247	9824.0	074325	\$954.0	0.4404	0.4443	6,4483	0.4522	0.4562	0-4602	1.0-
	1494.0	1894.0	1274.0	19470	1084.0	0.4840	0881.0	07670	0967-0	0.5000	0.0-
											a

n