12

7. Given a dataset with six records about startup companies, each record has two fields: Number of Clients and Annual Turnover. Assuming that k = 2and initial cluster centres as the first two records, compute the cluster centres of the resulting clusters until the stopping criterion is met. Use Euclidean distance as the distance metric. Also, compute the SSE (Sum of Squared Error) of each generated cluster.

Number of	Annual Turnover
Clients	(in Lakhs)
185	72
170	56
168	60
179	68
182	72
188	77

[This question paper contains 12 printed pages.]

Your	Roll	No

Sr. No. of Question Paper :	4192 H
Unique Paper Code :	2343012005
Name of the Paper :	Data Mining – I
Name of the Course :	B.Sc. (Hons.) Computer Science
Semester :	IV
Duration : 3 Hours	Maximum Marks : 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Section A (Question No. 1) is compulsory.
- Attempt any four questions from Section B (Questions 2 to 7).
- 4. The use of a simple calculator is allowed.
- 5. Parts of the question must be answered together.

(1000)

12

(15)

P.T.O.

Section A

- (a) Differentiate between the unsupervised and supervised evaluation measures used for cluster validity. (3)
 - (b) What is the anti-monotone property of the support measure in association rule mining? Does the confidence measure follow anti-monotone property?
 (3)
 - (c) Consider a dataset with two class labels, News and Entertainment, and six labeled documents D1-D6. A new document, D7, is to be classified. The similarity values of D7 with D1, D2, D3, D4, D5 and D6 are 0.75, 0.85, 0.66, 0.87, 0.70 and 0.84 respectively. Using the k-Nearest Neighbor classifier, predict the class label that should be assigned to D7 when k=3. Will the predicted class label change with k=5? (4)

Document	Class Label	
D1	News	
D2	Entertainment	
D3	Entertainment	
D4	News	
D5	News	
D6	Entertainment	

ID	Age	Fever	BD	Outcome
P1	Young	Yes	High	In ICU
P2	Young	No	High	Hospitalized
P3	Elderly	Yes	High	In ICU
P4	Middle aged	Yes	Moderate	In ICU
P5	Middle aged	No	High	Home Care
P6	Middle aged	Yes	Moderate	In ICU
P7	Elderly	No	Moderate	In ICU
P8	Elderly	No	High	Deceased
P9	Elderly	Yes	High	In ICU
P10	Young	No	High	Hospitalized

- (a) Compute the Gini Index of Age, Fever, and BD attributes. Given that you construct a decision tree using the Gini Index as the splitting criteria, which of the three attributes would you choose at the root? Justify your choice.
- (b) Compute the Gini Index of ID. Why should it not be used as a splitting attribute for constructing a decision tree? (3)
- (c) Given ten objects in the dataset (P1 P10), mention all train and test distributions for performing k-fold cross-validation. Assume the value of k = 5.
 (3)

P.T.O.

- (i) List the confusion matrix for "Classifier A" and "Classifier B". Find the accuracy, precision, sensitivity, recall and specificity for each classifier.
- (ii) What problem may occur if the provided training dataset of 500 patients had only 15 positive instances and the remaining negative instances? Which performance measure would you choose to evaluate the classifiers in such a scenario? Which is the better classifier between Classifier A and Classifier B in such a scenario?

(4)

- (b) Consider a categorical attribute Grade with three values {A, B, and C}. Convert this attribute to asymmetric binary attributes. (3)
- 6. Consider the given COVID-19 dataset of ten patients.

(d) Consider the given dataset, which contains six objects, each with two attributes: Age and Salary. K-means clustering is used to cluster the given objects. Do you see any issue with applying K-means to the given dataset? If yes, then state the issue. Also apply the appropriate preprocessing technique to overcome it. If no, state explicitly that no preprocessing technique is required. (4)

nggang dina sina di na sampa si kana sa	Age (in years)	Salary (in rupees)
Object 1	40	62000
Object 2	24	48000
Object 3	30	54000
Object 4	35	67000
Object 5	46	80000
Object 6	34	66000

(e) Define the curse of dimensionality. The Iris flower dataset comprises of 150 data points and four features, namely sepal length, sepal width, petal width, and petal length. Is it a high-dimensional data or low-dimensional data? Justify your answer.
 (4)

(f) Consider a decision tree to classify the health of an individual as Fit or Unfit given below :

- (i) Extract all classification rules from the decision tree.
- (ii) Classify the following object:

Age = 50, Workout = No, Smokes/ Drinks = No, Diet Control = No, Health = ? (4)

- (g) Classify the following tasks as "predictive" or "descriptive". Justify your answer. (4)
 - (i) Foretelling whether an online user will shop on Flipkart for a specific item.

 (c) Enumerate all association rules generated from the largest frequent itemset found in each dataset scan.
 Compute the confidence of each generated rule.
 Assuming that the minimum confidence threshold is 70%, find all the strong association rules.

(6)

5. (a) A medical team develops classification models for predicting the occurrence of a "genetic disorder" using Classifier A and Classifier B. Patients having genetic disorders are considered positive instances. In contrast, negative instances are ones with the absence of genetic disorders. The classifiers were tested on data from 500 patients and then obtained the result as :

	Actual Label		
	Presence of Genetic Disorder	Absence of Genetic Disorder	
Classifier A, predicted "presence of genetic disorder"	131	155	
Classifier A, predicted "absence of genetic disorder"	19	195	
Classifier B, predicted "presence of genetic disorder"	82	72	
Classifier B, predicted "absence of genetic disorder"	68	278	

8

- (iii) What is an outlier? Spot an outlier in the provided dataset. (3)
- (b) What is the need for sampling in data mining ?What problems arise if the sample size is too small or too large? (3)
- 4. Consider the following transactional data of a grocery store :

Transaction ID	Items
T1	Boots, Hoodie, Gloves
Τ2	Boots, Hoodie
Т3	Hoodie, Coat, Cardigan
Τ4	Cardigan, Coat
Т5	Cardigan, Gloves
Т6	Hoodie, Coat, Cardigan

- (a) What is the maximum number of rules that can be extracted from this data (including rules that have zero support).(3)
- (b) Use the Apriori algorithm on the given transactional dataset and compute the candidate and frequent itemsets for each dataset scan. Assume a support threshold of 33.34%.

4192

- 5
- (ii) Grouping the customers of a company according to their buying interests.
- (iii) Finding a group of genes such that genes in each group have related functionality.
- (iv) Using historical data from previous financial statements to project sales, revenue, and expenses for a company.
- (h) Given two objects X = (22, 1, 42, 10) and Y = (20, 0, 36, 8), compute the distance between these two objects using the following distance measures :
 - (i) Euclidean Distance
 - (ii) Manhattan Distance (4)

Section B

(a) Given the following training dataset, compute all class conditional and prior probabilities. Use the Naive Bayes approach to predict the class label (Salary) for the test instance : (12)

P.T.O.

)

4192

Education Level = PG, Career = Management, Years of Experience = 3 to 10

Education	Career	Years	of	Salary
Level		Experience	>	
UG	Management	Less than	3	Low
UG	Management	3 to 10	1	Low
PG	Management	Less than	3	High
PG	Service	More than	10	Low
UG	Service	3 to 10		Low
PG	Service	3 to 10		High
PG	Management	More than	10	High
PG	Service	Less than	3	Low
UG	Management	More than	10	High
UG	Service	More than	10	Low

- (b) A data mining application uses a particular type of data. Give one application for each of the following type: (3)
 - (i) Sparse dataset
 - (ii) Spatio-Temporal data
 - (iii) Graph-based data
- (a) Consider the following dataset having details about different departments of a company :

ID	Dept. Name	Location	Establish ed On	Size	Annual Budget
DP12	Finance	Nehru Place	5-01-2020	Large	460
DP19	Marketing	Nehru Place	8-08-2020	Medium	300
DP21	Human Resource	Hauz Khas	2-01-2020	Medium	240
DP27	Production		2-02-2020	Medium	290
DP33	Research & Development	Nehru Place	4-07-2021	Small	90
DP39	Information Technology	Hauz Khas	6-08-2020	Medium	210
DP41	Sales	Nehru Place	9-09-2020	Large	510
DP52	Customer Service	Hauz Khas	2-10-2020	Medium	
DP55	Public Relations	Nehru Place	3-03-2021	Large	900

7

* Annual Budget is In Lakhs

- (i) Identify the type of attributes ID, Dept.
 Name, Location, Established On, Size, and
 Annual Budget as nominal, ordinal, interval,
 or ratio. Give justification for each. (6)
- (ii) Suggest a technique for dealing with missing values in the attribute Location.Will the same technique apply to the attribute Annual Budget? Justify. (3)