1046

 6. (a) State the Ratio Test (limit form) for positive series. Using this test or otherwise, check the convergence of the following series:

(i)
$$\sum \left(\frac{n!}{n^n}\right)$$

(ii) $\sum \left(\frac{n!}{e^n}\right)$

(b) Check the convergence of the following series:

(i)
$$\sum_{n=2}^{\infty} \left(\frac{\log n}{n^2} \right)$$

(ii) $\sum \left(\frac{n^{n^2}}{(n+1)^{n^2}} \right)$

- (c) Define absolute convergence of a series. Show that every absolutely convergent series is convergent. Is the converse true? Justify your answer.
- (d) Check the following series for absolute or conditional convergence :

(i)
$$\sum (-1)^{n+1} \left(\frac{n}{n^2+1}\right)$$

(ii) $\sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{n^2+(-1)^n}\right)$

(2500)

[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	1046 D
Unique Paper Code	:	2352011102
Name of the Paper	:	DSC-2: Elementary Real Analysis
Name of the Course	:	B.Sc. (H) Mathematics (UGCF-2022)
Semester	:	I
Duration : 3 Hours		Maximum Marks : 90

Your Roll No.....

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any three parts from each question.
- 3. All questions carry equal marks.
- 1. (a) If $a \in \mathbb{R}$ is such that $0 \le a \le c$ for any $c \ge 0$, then show that a = 0.
 - (b) Find all values of x that satisfy |x − 1| > |x + 1|. Sketch the graph of this inequality.
 - (c) Find the supremum and infimum, if they exist, of the following sets:

(i)
$$\left\{ \cos \frac{n\pi}{2} : n \in \mathbb{N} \right\}$$

(ii) $\left\{ \frac{x+2}{3} : x > 3 \right\}$

P.T.O.

2

- (d) Show that $\sup \left\{ 1 \frac{1}{n} : n \in \mathbb{N} \right\} = 1$.
- (a) Let S be a non-empty subset of ℝ that is bounded. Prove that
 - Inf S = $-Sup \{-s: s \in S\}$
 - (b) State and prove the Archimedean Property of real numbers.

(c) If
$$S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$$
, find *Inf* S and Sup S.

- (d) Define a convergent sequence. Show that the limit of a convergent sequence is unique.
- 3. (a) Using the definition of limit, show that

$$\lim_{n \to \infty} \frac{2n+3}{3n-7} = \frac{2}{3}$$
(b) Show that
$$\lim_{n \to \infty} \left(n^{\frac{1}{n}} \right) = 1.$$

- (c) State and prove the Sandwich Theorem for sequences.
- (d) Show that every increasing sequence which is bounded above is convergent.
- 4. (a) Let $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$ for all $n \ge 1$. Prove that $\langle x_n \rangle$ converges and find its limit.

1046

(b) Prove that every Cauchy sequence is bounded.

(c) Show that the sequence $\left\langle x_{n}\right\rangle$ where

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, for all $n \in \mathbb{N}$,
does not converge.

(d) Find the limit superior and limit inferior of the following sequences:

(i)
$$x_n = (-2)^n \left(1 + \frac{1}{n}\right)$$
, for all $n \in \mathbb{N}$
(ii) $x_n = (-1)^n \left(\frac{1}{n}\right)$, for all $n \in \mathbb{N}$

- 5. (a) Show that the geometric series $\sum_{k=1}^{\infty} ar^{k-1}$ converges if and only if |r| < 1.
 - (b) Find the sum of the following series, if it converges,

$$\sum \frac{1}{(n+a)(n+a+1)}, : a > 0$$

- (c) Find the rational number which is the sum of the series represented by the repeating decimal $0.\overline{15}$.
- (d) Check the convergence of the following series:

(i)
$$\sum \frac{1}{\log n}, n \ge 2$$

(ii) $\sum \tan^{-1} \left(\frac{1}{n}\right)$

P.T.O.