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6. (a) State the Ratio Test (limit form) for positive series.
Using this test or otherwise, check the convergence

of the following series:
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(b) Check the convergence of the following series:
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(c) Define absolute convergence of a series. Show
that every absolutely convergent series is

convergent. Is the converse true? Justify your

answer.

(d) Check the following series for absolute or

conditional convergence :
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Instructions for Candidates

1

Write your Roll No. on the top immediately on receipt
of this question paper.

Attempt any three parts from each question.
All questions carry equal marks.

(a) If a € R is such that 0 < a < € for any € >0,
then show that a = 0.

(b) Find all values of x that satisfy [x — 1] > |x + 1|.
Sketch the graph of this inequality.

(¢) Find the supremum and infimum, if they exist, of

the following sets:
nrw
(i) {cos;: n EN}

(ii) {ngz x>3}
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(d) Show that Sup {1—1: neN}zl, |
n

(a) Let S be a non-empty subset of R that is bounded.
Prove that
Inf S = —Sup {-s: s € S}

(b) State and prove the Archimedean Property of real

numbers.

(c) If S={l—l: n,mEN}, find Inf S and Sup S.
n m

(d) Define a convergent sequence. Show that the limit

of a convergent sequence is unique.

(a) Using the definition of limit, show that
2043 2
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(b) Show that lim (n4]=1 ;
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(c) State and prove the Sandwich Theorem for

sequences.

(d) Show that every increasing sequence which is

bounded above is convergent.

(a) Letx, =1andx_, = \/2+x, foralln2= 1. Prove

+1

that <xn> converges and find its limit.
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(b) Prove that every Cauchy sequence is bounded.
(c¢) Show that the sequence (xn> where

X, =1+l+l+m+l, for all n e N,
2 n
does not converge.
(d) Find the limit superior and limit inferior of the
following sequences:
1
(i) X, =(—2)n (1-&-—], for all ne N
n

n

(i) X5 =(-1)" (lJ for all neN

(a) Show that the geometric series Z:ﬁ]ark'l

converges if and only if |r| < 1.

(b) Find the sum of the following series, if it converges,

Z( ) , ca>0

n+a)(n+a+1)

(¢) Find the rational number which is the sum of the

series represented by the repeating decimal 0.15.

(d) Check the convergence of the following series:
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