1067

6

19. Find the curvature $\kappa(t)$ for the circular helix

 $x = a \cos t$, $y = a \sin t$, z = c t, where a and c are constants and a > 0.

[This question paper contains 6 printed pages.]

b)

5

3

1

.

÷10

45

Your Roll No.....

Sr. No. of Question Paper	:	1067 C
Unique Paper Code	:	32351101
Name of the Paper	:	BMATH 101 C1 - Calculus
Name of the Course	:	CBCS (LOCF) B.Sc. (H) Mathematics
Semester	•	Ι
Duration : 3 Hours		Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All the sections are compulsory.
- 3. All questions carry equal marks.
- 4. Use of non-programmable scientific calculator is allowed.

SECTION - I

Attempt any four questions from Section -I.

(500)

P.T.O.

1067

1. Sketch the graph of the function $f(x) = \frac{1}{3}x^3 - 9x + 2$

by finding intervals where it increases and decreases, relative extrema, concavity and inflection points (if any).

2. Evaluate the following limit

 $\lim_{x \to 0} \frac{\tan^{-1}(3x) - 3\tan^{-1}x}{x^3}$

3. Determine whether the graph of following function has a vertical tangent or a cusp

$$f(x) - x^{2/3}(2x + 5)$$

- 4. It is projected that t years from now, the population of a certain country will be $P(t) = 50e^{0.02t}$ millions.
 - (a) At what rate will the population be changing with respect to time 10 years from now?
 - (b) At what percentage rate will the population be changing with respect to time t years from now?

1067

5

SECTION – IV

Attempt any four questions from Section – IV.

- 15. For what values of t, the vector function $F(t) = e^{t} \left[t\hat{i} + \frac{1}{t}\hat{j} + 3\hat{k} \right] \text{ is continuous?}$
- 16. Show that the vector valued function

$$R(t) = (2\hat{i} + 2\hat{j} + \hat{k}) + (\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j})\cos t + (\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k})\sin t$$

describes the motion of a particle moving in the circle of radius 1, centered at the point (2,2,1) and lying in the plane x + y - 2z = 2.

- 17. A shell fired from ground level at an angle of 45° hits the ground 2000 m away. What is the muzzle speed of the shell?
- 18. A baseball hit at a 24° angle from 3 ft above the ground just goes over the 9-ft fence 400 ft from home plate. About how fast was the ball traveling, and how long did it take the ball to reach the wall?

1067

1

¥

¥

5. If $y = e^{m \cos^{-1}x}$, show that

$$(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 + m^2)y_n = 0.$$

SECTION – II

Attempt any three questions from Section - II.

- 6. Sketch the graph of the curve $r = 3 \sin 2\theta$ in polar coordinates.
- 7. Find an equation for a hyperbola that satisfies the condition that the curve has vertices $(\pm 1,0)$ and asymptotes $y = \pm 2x$.
- 8. Describe the graph of the equation :

 $x^2 + 4y^2 + 6x - 40y + 93 = 0.$

9. Identify and sketch the curve :

 $x^2 + 4 xy - 2 y^2 - 6 = 0.$

P.T.O.

SECTION – III

Attempt any four questions from Section - III.

10. Find the arc length of the parametric curve :

 $x = \cos t$, $y = t + \sin t$ for $0 \le t \le n$.

- 11. Find the area of the surface generated by revolving the curve $x = \sqrt{25 - y^2}$, $-3 \le y \le 3$ about the y-axis.
- 12. The region bounded by the curves y = x and $y = x^2$ is rotated about the line y = 4. Compute the volume of the resulting solid.
- 13. Find the value of the integral $\int_0^{\ln 5} \left(\frac{e^x e^{-x}}{e^x + e^{-x}} \right) dx$.
- 14. Evaluate $\int \sin^2 x \cos^4 x \, dx$.

а а С