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, Your Roll No......'.' '.....(c) (i) For the inner product space V = Pr(R) with
rl

<f, g> = | fft)g(t)dt and the linear operator
I t-l

T on V defined bY T(0 = f' + 3f, comPute

r-(4 - 2tf.

(ii) For the standard inner proiluct space V = IR3

and a linear transformation g: V --+ IR. given

by g(a,, a} a3) = at - 2a, + 4ay find a vector

y e V such that g(x) =<x, y> for all x e V.

(6,6,2+4)

(a) Prove that a normal operator T on a finite-
dimensional complex inner product space V yields

an orthonormal basis for V consisting of
eigenvectors of T. Justify the validity of the

conclusion of this result if V is a finite-dimensional

real inner product space.

(b) Let V = Mr"r(lR) and T: V -+ V be a linear

operator given by T(A) = Ar. Determine whether

T is normal, self-adjoint, or neither. If possible,

produce an orthonormal basis of eigenvectors of
T for V and list the corresponding eigenvalues.
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(c) For the matrix A =

matrix P and

P'AP = D.

f ind an orthogonal

D such that

(6.5,6.5,6.5)

2t I

121
t12

a diagonal matrix

(1000)

l. (a) (i) Prove that If F is a field, then F[x] is a

Principal Ideal Domain.

(ii) Is Z[x], a Principal Ideal Domain? Justify
your answer.

. (b) Prove that <x2 + l> is not a maximal ideal in

zlr).

P.T.O.
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(c) State and prove the reducibility test for polynomials
of deg;ee 2 or 3. Does it fail in higher order

folynomials? Justify. $+2,6,;)

(a) ft) State and prove Gauss,s Lemma. 
,, 

':"

(ii) Is every irreducible polynomial dver Z
primitive? Justify.

(b) Construct a field of order 25.

(") L Z[J(5] , prove that r +:r(g is irreducibte

but not prime. g+2.5,6.5,6.5)

(a) Let V = Rr and define f,, f, f, e V. as follows:

f,(x,Y,z)=x-2y,
fr(x,l,z)=x+y+2,
{r(x,y,z)=y-32.
Prove that {f, f2, f3} is a basis for V. and then
find a basis for V for which it is the dual basis.

(b) Test the linear operator T: pr(R) -+ pr(lR), T(f(x))
= f(0) + f(l)(x + x2) for diagonalizability and if
diagonalizable, find a basis p for V such that [T]p
is a diagonal matrix.

(a) For a linear operator T: IR3 -+ IRr, T(a, b, c; =
(-b + c, a + c, 3c), delermio,e the T-cyclic subspace
W of IRr generated,by er = (1,0,0). Also find the
characteristic polynomial. of the operator T*.

(b) State Cayley-Hamilton theorem and verify it for
the linear operator T:p2(lR) _+ pr(lR), T(f(x)) =
f'(x).

(c) Show that the vector space IRa = W, e W, O Wj
where W, = {(a, b,0,0): a, b e R), W, = I(0,0,
c, 0): c e R) and W, = {(0,0,0, d): d e R}.

(6.s,6.5,6.5)

(a) Consider the vector space C over lR with an inner
product <.,.>. Let Z denote the conjugate of z.

Show that <.,.>' defined by <2, w>,= <Z,W> for' all z, w e C is also an inner product on C. Is
<.,.>" defined by <2, w>,,:<z + Z, w + fr> for all
z, w e C an inner product on C? Justify your
answer.

(b) Let V = P(R) with the inner product <p(x), q(x)>

tl
= J_,n(th(r)at vp(x). q(x) € v. compule lhe

orthogonal projection of the vector p(x) = x2k-r on
Pr(R),wherekeN.

4

2

53

(c) Let A=
t4
z3

e Mr,,, (R) . Find an expression for

An.where n is an arbitrary natural number.
(6,6,6)

P.T.O.


