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(c) Let V, W and Z be finite dimensional vector

spaces with ordered basis a, B, Y respectively. Let

T:V— Wand U: W — Z be linear transformations.

Then [UT], =[UT[T].

(6.5)
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1. (a) Find all the zero divisors and units in Z, @ L

(6)

(b) Prove that characteristic of an integral domain is

0 or prime number p. (6)

(c) State and prove the Subring test (6)

2. (a) Let R be a commutative ring with unity and
let A be an ideal of R then prove that R/A
is a field if and only if A is a maximal ideal of

R. (6)

(b) Let A and B are two ideals of a commutative
ring R with unity and A+B=R then show that

AnB = AB. (6)
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6. (a) Let T be the linear operator on R? define by

-]

Let P be the standard ordered basis for R? and let

{HG)

Find [T];. (6.5)

(b) Let V and W be finite dimensional vector spaces
with ordered basis B and vy respectively. Let
T:- V — W be linear. Then T is invertible if and

only if [’1"]‘;3 is invertible.

Furthermore, [T‘l]f :([T]L )_l . (6.5)

P.T:0;



4810 ) '

Find Null space and Range space of T and verify

Dimension Theorem. (6.5),

(b) Define T: M,,,(R) — P,(R) by T(a z] =(@+b)+
C

(2d)x + bx?

I 9 O T N

Y = {1, x, x?} be basis of M,x,(R) and P,(R)
respectively. Compute [T}E. (6.5)
(c) Let V and W be vector spaces over F, and suppose
that {v,, V,,..., V_} be a basis for V. For Wi, Weoy W
in W. Prove that there exists exactly one linear
transformation T: V — W such that T(v,) = w, for

i=1,2,.,n. (6.5)
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(c) If an ideal I of a ring R contains a unit then show
that I=R. Hence prove that the only ideals of a

field F are {0} and F itself. (6)

3. (a) Find all ring homomorphism from Ly to Z,s.

(6.5)

b
(b) Let R :{[z ]|a,beZ} and @ be the mapping
a

b
that takes [2 a:‘ to a-b. Show that

(i) @ is a ring homomorphism.
(i) Determine Ker ®.

(iii) Show that R/Ker ® is isomorphic to Z.
(6.5)

P.T.O.
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(¢) Using homomorphism, prove that an integer n with (b) Let V(F) be a vector space and let S, c S, < V.
decimal representation a, a, , ... ... a, is divisible Prove that

by 9 iffa, +a,_, + ..+ a, is divisible by 9.
(i) If S, is linearly dependent then S, is linearly

(6.5)
dependent
4. (a) Let V(F) be the vector space of all real valued @) If S, is linearly independent then S, is
function over K. linearly independent (6)
Leth={feVlf(x)=f(4x)VxelR) ' '

. \ (¢) Show that S:{[] 1}[1 1],(1 0], [0 IJ} forms

and V, ={f € V[f(-x) = —f(x) V xeR) 1 0o/l0 1) \1 1)1 1
a basis for M,,,(R). (6)

Prove that V_and V, are subspaces of V and

V=V, &V, (6)
5. (a)Let T: R® —» R? be the linear transformation

defined by

o T(a,, a,, a;) = (a, - a, 2a,).

P.T.O.



