[This question paper contains 2 printed pages.]

			Your Roll No
Sr. No. of Question Paper	:	4686	Ε
Unique Paper Code	:	32351402	
Name of the Paper	:	Riemann Integration and	Series of Functions
Name of the Course	:	B.Sc. (H) Mathematics	
Semester	:	IV	anujan College Libra
Duration : 3 Hours		2	Maximum Marks : 75
Instructions for Candidates		(*)	Wew Delhisters

- Write your Roll No. on the top immediately on receipt of this question paper. 1.
- Attempt two parts from each question. 2.

l(a)	Let f be integrable on [a, b], and suppose g is a function on [a, b] such that $g(x) = f$	\tilde{x}
	except for finitely many x in [a, b]. Show g is integrable and $\int_a^b g = \int_a^b f$	(6)
(b)	Show that if f is integrable on [a, b] then f^2 also is integrable on [a, b].	(6)
(c)	(i) Let f be a continuous function on [a,b] such that $f(x) \ge 0$ for all $x \in [a, b]$.	Show
	that if $\int_a^b f(x) dx = 0$ then $f(x) = 0$ for all $x \in [a, b]$	(3)
	(ii) Give an example of function such that $ f $ is integrable on [0,1] but f is not	
	integrable on [0,1]. Justify it.	(3)
		((5))

- State and prove Fundamental Theorem of Calculus I. 2(a) (6.5)
- State Intermediate Value Theorem for Integrals. Evaluate $\lim_{x\to 0} \frac{1}{x} \int_0^x e^{t^2} dt$. (6.5)(b)
- (c)

Let function $f: [0,1] \to R$ be defined as $f(x) = \begin{cases} x^2 & \text{if } x \text{ is } rational \\ 0 & \text{if } x \text{ is } irrational \end{cases}$

Calculate the upper and lower Darboux integrals for f on the interval [0,1]. Is f(6.5)integrable on [0.1] ?

- Examine the convergence of the improper integral $\int_0^\infty e^{-x} x^{n-1} dx$. (6)3(a)
- Show that the improper integral $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ is convergent but not absolutely convergent. (b) (6)

P.T.O.

4686

(c) Determine the convergence or divergence of the improper integral

(i)
$$\int_0^1 \frac{dx}{x(\ln x)^2}$$

(ii)
$$\int_1^\infty \frac{xdx}{\sqrt{x^3 + x}}$$

4(a) Show that the sequence

$$f_n(x) = \frac{nx}{1+nx}, \ x \in [0,1], \ n \in N$$

converges non-uniformly to an integrable function f on [0,1] such that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$$
(6.5)

- (b) Show that the sequence $\{x^2e^{-nx}\}$ converges uniformly on $[0, \infty)$. (6.5)
- (c) Let (f_n) be a sequence of continuous function on $A \subset R$ and suppose that (f_n) converges uniformly on A to a function $f: A \to R$. Show that f is continuous on A. (6.5)
- 5(a) Let $f_n(x) = \frac{nx}{1+n^2x^2}$ for $x \ge 0$. Show that sequence $\langle f_n \rangle$ converges non-uniformly on $[0, \infty)$ and converges uniformly on $[a, \infty), a > 0$. (6.5)
- (b) State and prove Weierstrass M-test for the uniform Convergence of a series of functions.
 (6.5)
- (c) Show that the series of functions $\sum \frac{1}{n^2 + x^2}$, converges uniformly on R to a continuous function. (6.5)
- 6(a) (i) Find the exact interval of convergence of the power series (3)

$$\sum_{n=0}^{\infty} 2^{-n} x^{3n}$$

(ii) Define *sinx* as a power series and find its radius of convergence (3)

- (b) Prove that $\sum_{n=1}^{\infty} n^2 x^n = \frac{x(x+1)}{(1-x)^3}$ for |x| < 1 and hence evaluate $\frac{\sum_{n=1}^{\infty} n^2 (-1)^n}{3^n}$. (6)
- (c) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ have radius of convergence R > 0. Then f is differentiable on (-R, R) and

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \quad for \ |x| < R.$$
(6)

(3500)

(6)