This question paper contains 4 printed pages.]

Instructions for Candidates

Write your Roll No. on the top immediately on receipt of this question paper. $1.$

- All sections are compulsory. $2.$
- Marks of each part are indicated. $3.$

Section - I

1. Attempt any two out of the following:

$[7.5+7.5]$

Find the integral surfaces of the equation $u u_x + u_y = 1$ for the initial data: (a)

$$
x(s, 0) = s, y(s, 0) = 2s, u(s, 0) = s.
$$

Apply $\sqrt{u} = v$ and $v(x, y) = f(x) + g(y)$ to solve: (b)

 $x^4 u_x^2 + y^2 u_y^2 = 4 u.$

Find the solution of the initial-value systems (c)

$$
u_t + u u_x = e^{-x} v, \ v_t - a v_x = 0,
$$

with $u(x, 0) = x$ and $v(x, 0) = e^x$.

P.T.O.

Section - II

 $\overline{2}$

2. Attempt any one out of the following:

Derive the two-dimensional wave equation of the vibrating membrane (a)

$$
u_{tt}=c^2(u_{xx}+u_{yy})+F,
$$

where, $c^2 = T/\rho$, and T is the tensile force per unit length

 $F = f/\rho$, and f be the external force, acting on the membrane.

- Drive the potential equation $\nabla^2 V = 0$, where ∇^2 is known as Laplace operator. (b)
- 3. Attempt any two out of the following:
	- Determine the general solution of (a)

$$
4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2.
$$

 (b) Given that the parabolic equation

$$
u_{xx}=a u_t + b u_x + c u + f,
$$

where the coefficients are constants, by the substitution $u = v e^{\frac{1}{2}bx}$ and for the case $c = -(b^2/4)$, show that the given equation is reduced to the heat equation

$$
v_{xx}=a v_t+g,
$$

where $g = f e^{-bx/2}$.

 (c) Reduce the equation

$$
(n-1)^2u_{rr}-\gamma^{2n}u_{yy}=n\gamma^{2n-1}u_{rr}.
$$

to canonical form for $n = 1$ and $n = 2$ if possible and also find their solutions.

Section - III

4. Attempt any three parts out of the following: $[7+7+7]$

 (a) Determine the solution of the given below initial-value problem

 $u_{tt} - c^2 u_{xx} = x$, $u(x, 0) = 0$, $u_t(x, 0) = 3$.

 $[6+6]$

Obtain the solution of the initial boundary-value problem (b)

> $u_{tt} = 9u_{xx}$ $0 < x < \infty$, $t > 0$, $u(x, 0) = 0$, $0 \leq x < \infty$, $u_t(x, 0) = x^3$, $0 \le x < \infty$, $u_{x}(0,t)=0,$ $t\geq 0$.

 (c) "Solve:

> $u_{tt} = c^2 u_{xx},$ $u(x,t) = f(x)$ on $t = t(x),$ $u(x,t) = g(x)$ on $x + ct = 0$, where $f(0) = g(0)$.

Determine the solution of the initial boundary-value problem: (d)

Section -- IV

5. Attempt any three out of the following:

 (a)

Determine the solution of the initial boundary value problem: $u_t = 4 u_{xx}$ $0 < x < 1, t > 0$

 $u(x, 0) = x^2 (1-x),$ $0 \le x \le 1,$ $u(0, t) = 0$, $u(l, t) = 0$, $t \ge 0$.

(b) Determine the solution of the initial boundary value problem by the method of separation of variables:

$$
u_{tt} = c^2 u_{xx}, \t 0 < x < \pi, \ t > 0
$$

$$
u(x, 0) = 0, \t 0 \le x \le \pi,
$$

$$
u_t(x, 0) = 8 \sin^2 x, \t 0 \le x \le \pi,
$$

$$
u(0, t) = 0, \t u(\pi, t) = 0, \t t \ge 0.
$$

P.T.O.

 $[7+7+7]$

(c) Solve by using method of separation of variables:

 $u_{tt} - u_{xx} = h$, $0 < x < 1$, $t > 0$, h is a constant $u(x, 0) = x^2$, $0\leq x\leq 1,$ $u_t(x, 0) = 0,$ $0\leq x\leq 1,$ $\mathcal{L}^{\mathcal{A}}$ $u(0,t) = 0$, $u(1,t) = 0$, $t \ge 0$.

(d) State and prove the uniqueness of solution of the heat conduction problem.