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2. All sections are compulsory.

3. Marks of each part are indicated.

Section - I
1. Attempt any two out of the following: [7.5+7.5]

(2)  Find the integral surfaces of the equation u u, + u,, = 1 for the initial data:
x(s,0) = 5,¥(s,0) = 2s,u(s,0) = 5.

(b)  Apply Vu = vand v(x,y) = f(x) + g(») to solve:
*ul+y?ud=4u

{c) Find the solution of the initial-value systems

U tuu, =e*y, v, —av, =0,

- with u(x, 0) = x and v(x, 0) = e*.
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Section — II
2. Attempt any one out of the following: [6]
(a)  Derive the two- dimensional wave equation of the vibrating membrane

Upe = €2 (Upy + Uyy) +F,
where, c2 = T/p, and T'is the tensile force per unit length
F = f/p,and fbe the external force, acting on the membrane.

(b)  Drive the potential equation V2V = 0, where V2 is known as Laplace operator.

3. Attempt any two out of the following: [6+6]
(@) Determine the general solution of
fuyy + Suyy, +uyy, +u, Fuy, =2
(b)  Given that the parabolic equation

Uy =aU+bu,+cu+f,

where the coefficients are constants, by the substitution u = v e%bx and for the case
¢ = —(b?/4), show that the given equation is reduced to the heat equation
Ve =av+g,
where g = f e7P*/2,
()  Reduce the equation
(n =1 upy — ¥y  upy = y™ 1y,

to canonical form forn = 1 and n = 2 if possible and also find their solutions.

Section — ITI

4. Attempt any three parts out of the following: [7+7+7]
(a) Determine the solution of the given below initial-value problem

U = CPuyy =%,  u(x,0)=0, u/(x,0)=3.
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(b)  Obtain the solution of the initial boundary-value problem

Uy = Uy, 0<x<m,t?0,
u(x,0) =0, 0 <x< oo,
w(x0=x3, = 0<x<o,
1,(0,8) = 0, t>0.

(c) .Solve:

Upe = CPutyy, .
u(x,t) = f(x) on =¢(x),
u(x, t) = g(x) on x+ct=0,
where £(0) = g(0).

(d)  Determine the solution of the initial boundary-value problem:
U = g, 0<x<l t>0
u(x,0) = f(x), 0<x<|,
u(x,0) = g(x), 0<sx<l,

u(0,t) =0, u(L,t)=0, t>0.

Section - IV
5. Attempt any three out of the following: [7+7+7]
(a) Determine the solution of the initial boundary value problem:

U = 4u,,, 0<x<1, t>0
u(x,0) =x? (1 -x), 0<sx<1,
u0,6)=0, u(l,t)=0, t>0.

(b) Determine the solution of the initial boundary value problem by the method of
separation of variables:

Uy = CPu,,, 0<x<m t>0
u(x,0) =0, 0<x<m,
u,(x,0) = 8sin? x, 0<x<m,

u(0,t) =0, u(mt)=0, t=0.
P.T.O.
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(c) Solve by using method of separation of variables:

Uy — Uyy = h, 0<x<1, t>0,hisaconstant
u(x, 0) = x?, 0<x<1,
ut(xi 0) = 0’ 0<x < 1,

u(0,6) =0, u(l,t)=0, t=0.

(d) State and prmFé the uniqueness of solution of the heat conduction problem. .
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