[This question paper contains 4 printed pages.]

			Your Roll No
Sr. No. of Question Paper	:	4530	E
Unique Paper Code	:	32351401	
Name of the Paper	:	BMATH408- Partial Differential Equations	
Name of the Course	:	B.Sc.(H) Mathema	atics :
Semester	:	IV·	*
Duration : 3 Hours			Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All sections are compulsory.
- 3. Marks of each part are indicated.

Section - I

1. Attempt any two out of the following:

[7.5+7.5]

(a) Find the integral surfaces of the equation $u u_x + u_y = 1$ for the initial data:

$$x(s,0) = s, y(s,0) = 2s, u(s,0) = s.$$

(b) Apply $\sqrt{u} = v$ and v(x, y) = f(x) + g(y) to solve:

 $x^4 \, u_x^2 + y^2 \, u_y^2 = 4 \, u.$

(c) Find the solution of the initial-value systems

$$u_t + u \, u_x = e^{-x} v, \ v_t - a v_x = 0,$$

with u(x, 0) = x and $v(x, 0) = e^x$.

P.T.O.

Section - II

2

2. Attempt any one out of the following:

(a) Derive the two- dimensional wave equation of the vibrating membrane

$$u_{tt} = c^2(u_{xx} + u_{yy}) + F,$$

where, $c^2 = T/\rho$, and T is the tensile force per unit length

 $F = f/\rho$, and f be the external force, acting on the membrane.

- (b) Drive the potential equation $\nabla^2 V = 0$, where ∇^2 is known as Laplace operator.
- 3. Attempt any two out of the following:
 - (a) Determine the general solution of

$$4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2.$$

(b) Given that the parabolic equation

$$u_{xx} = a u_t + b u_x + c u + f,$$

where the coefficients are constants, by the substitution $u = v e^{\frac{1}{2}bx}$ and for the case $c = -(b^2/4)$, show that the given equation is reduced to the heat equation

$$v_{xx} = a v_t + g,$$

where $g = f e^{-bx/2}$.

(c) Reduce the equation

$$(n-1)^2 u_{\gamma\gamma} - \gamma^{2n} u_{\gamma\gamma} = \eta \gamma^{2n-1} u_{\gamma\gamma}$$

to canonical form for n = 1 and n = 2 if possible and also find their solutions.

Section - III

4. Attempt any three parts out of the following:

[7+7+7]

(a) Determine the solution of the given below initial-value problem

 $u_{tt} - c^2 u_{xx} = x,$ u(x, 0) = 0, $u_t(x, 0) = 3.$

[6+6]

Obtain the solution of the initial boundary-value problem (b)

> $u_{tt} = 9u_{xx}$ $0 < x < \infty, t > 0$, u(x,0)=0, $0 \leq x < \infty$, $u_t(x,0)=x^3, \qquad 0\leq x<\infty,$ $u_x(0,t)=0,$ $t \ge 0$.

(c) .Solve:

> $u_{tt} = c^2 u_{xx},$ u(x,t)=f(x)on t = t(x),u(x,t)=g(x)on x + ct = 0, where f(0) = g(0).

Determine the solution of the initial boundary-value problem: (d)

$u_{tt}=c^2u_{xx},$	0 < x < l, t > 0
u(x,0)=f(x),	$0 \leq x \leq l$,
$u_t(x,0)=g(x),$	$0 \leq x \leq l$,
u(0,t) = 0, u(l,t) = 0,	$t \ge 0$

Section -- IV

5. Attempt any three out of the following:

(a)

Determine the solution of the initial boundary value problem: $u_t = 4 u_{xx},$ 0 < x < 1, t > 0 $u(x,0) = x^2 (1-x), \qquad 0 \le x \le 1,$

 $u(0,t) = 0, \quad u(l,t) = 0, \quad t \ge 0.$

(b) Determine the solution of the initial boundary value problem by the method of separation of variables:

$$u_{tt} = c^2 u_{xx}, \qquad 0 < x < \pi, \ t > 0$$

$$u(x, 0) = 0, \qquad 0 \le x \le \pi,$$

$$u_t(x, 0) = 8 \sin^2 x, \qquad 0 \le x \le \pi,$$

$$u(0, t) = 0, \qquad u(\pi, t) = 0, \quad t \ge 0.$$

P.T.O.

[7+7+7]

(c) Solve by using method of separation of variables:

 $u_{tt} - u_{xx} = h, 0 < x < 1, t > 0, h \text{ is a constant}$ $u(x, 0) = x^{2}, 0 \le x \le 1,$ $u_{t}(x, 0) = 0, 0 \le x \le 1,$ $u(0, t) = 0, u(1, t) = 0, t \ge 0.$

(d) State and prove the uniqueness of solution of the heat conduction problem.