SI NO ab QP 4682

 Unique Paper Code
 : 32375301_OC

 Name of the Paper
 : Basics of Statistical Inference

 Name of the Course
 : Statistics: Generic Elective for Honours (GE-III) under

 CBCS
 : III

 Duration
 : 3 Hours

 Maximum Marks
 : 75

 Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt six questions in all. Question no. 1 is compulsory.

- 3. Attempt five questions from the remaining.
- Use of a simple calculator is allowed.

1. (a) Answer the following:

- (i) In a random sample of size n from a population with mean μ, the sample mean (x̄) is an ----- estimate of -----.
- (ii) A sample is always ----- estimate of population parameters.
- (iii) In any testing problem, we reject the null hypothesis if the p-value is the level of significance.
- (iv) The test statistic for the goodness of fit is ------
- (v) The ----- is used as a nonparametric alternative to the one-sample t-test.
- (vii) In a CRD with n plots and v treatments, the degrees of freedom for error are --

(viii) For testing a single proportion, the SE is -----.

(ix) In a 3×4 contingency table the degrees of freedom are -----.

(b) Name the basic principles of the design of experiments. Write a short note on each.(c) Define Type-I and Type-II error.

(9, 3, 3)

2. (a) Define unbiasedness, consistency and efficiency of an estimator.
(b) Let X₁, X₂ and X₃ be a random sample of size 3 from a population with mean μ and variance σ². If T₁ = 2X₁-4X₂ + 3X₃ is an estimator for μ, check whether T₁ is unbiased. Find the value of α such that T₂ = ¹/₃ (αX₁+X₂ + X₃) is also unbiased. With this value of α, which of the above two estimator is best?

- (a) Construct a 100(1-α)% confidence interval for the mean (μ) of the normal population when variance (σ²) is (i) known and (ii) unknown.
 - (b) If a random sample of size n = 25 from a normal population with variance $\sigma^2 = 16$ has mean $\bar{x} = 72.5$, then construct a 99% confidence interval for the population mean μ .

(7, 5)

1 p - 1 (1 1 1

12. 311

(1,1) a falarysy a sa sa a sa sa a salasy ≈

(5, 7)

4. (a) Describe Wilcoxon signed-rank test to test the null hypothesis H₀: μ = μ₀against the alternative hypothesis H₁: μ > μ₀. Also, discuss the case of paired data.
(b) The following are the weights in pounds, before and after, of 16 persons who stayed on a certain weight reduction diet for 4 weeks:

1

Before	47	83	32	61	97	27	77	71
After	37	76	19	63	93	22	80	73

Use the signed rank test to test at the 0.05 level of significance whether the weightreducing diet is effective.

(6, 6)

(6, 6)

5. (a) The following data pertain to the shipments received by a large firm from two different vendors:

	Number Rejected	Number imperfect but acceptable	Number Perfect
Vendor A	12	23	60
Vendor	8	12	32

Test at 0.01 level of significance that both vendors ship products of similar quality. (b) In a random sample of visitors to a famous tourist attraction, 84 of 250 men and 156 of 250 women bought souvenirs. Test the hypothesis at 5% level of significance that the men and women are equally interested to buy souvenirs at this tourist attraction. (6, 6)

6. For a two-way classified data with one observation per cell:

For a two	-way classified data with one observ	vation per cell:
(a) Give	the fixed effect mathematical model	stating clearly:
(i)	the assumption used	0.1.1.0.10
(ii)	the hypothesis to be tested	a tao sana ang
(iii)	the test statistic to be used and	The second second
(iv)	the ANOVA Table.	1 1
(b) Also	obtain:	
	(i) the estimates of the paramet	ers in the model and
	(ii) the expectation of the mean	square error.
		(6, 6)

7. (a) What is meant 'Experimental error'? What are its main sources? What methods are adopted to increase the accuracy of an experiment? How do shape and size of the plots and blocks influence the experimental error?

(b) Complete the following table for the analysis of variance of a fixed effects randomised block design: Degree of Source of Sum of Mean sum of Variance

	variation	freedom	Square	square	Ratio
ŀ	Blocks	5	41.71	-	-
Γ	Treatments	3		-	•]*
ſ	Error	-	-	7.12	
	Total	-	496.96		

Test the hypothesis that the treatment effects are equal to zero, given that F0.05 (5, 15) $= 2.90, F_{0.05}(3, 15) = 3.29.$

2