8

some vectors $v_1, v_2, ..., v_n \in V$, then $\{v_1, v_2, ..., v_n\}$ is linearly independent set in V. Is the converse true? Justify with examples. Under what condition the converse holds true, Justify.

[This question paper contains 8 printed pages.]

Sr. No. of Question Paper	:	2033 F
Unique Paper Code	:	2354001202
Name of the Paper	:	Introduction to Linear Algebra
Name of the Course	:	Algebra GE
Semester	:	$\Pi = \begin{pmatrix} \psi_{k} \\ \psi_{k} \end{pmatrix} $
Duration : 3 Hours		Maximum Marks : 90
		IL NOW DOLL -

Your Roll No.....

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt **all** question by selecting **two** parts from each question.
- 3. Part of the questions to be attempted together.
- 4. All questions carry equal marks.
- 1. (a) If x and y are vectors in \mathbb{R}^n then prove that

 $|x.y| \le (||x||)(||y||).$

Also verify it for vectors x = [-1, -1, 0] and

 $\mathbf{y} = \left[\sqrt{2}, \sqrt{2}, \sqrt{2}\right].$

(b) Use Gaussian Elimination to solve the following system of linear equations. Indicate whether the system is consistent or inconsistent. Give the complete solution set, if consistent.

$$3x - 3y - 2z = 23$$

 $-6x + 4y + 3z = -40$
 $-2x + y + z = -12$

(c) Use Gauss-Jordan row reduction method to find the complete solution set for the following system of equations.

$$4x - 8y - 2z = 0$$

 $3x - 5y - 2z = 0$
 $2x - 8y + z = 0$

, 2033

6. (a) Let L: $\mathbb{R}^3 \to \mathbb{R}^3$ be given by

 $L\left(\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\right) = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}.$

7

- (i) Is [1, -2, 3] in Ker(L)? Why or why not?
 (ii) Is [2, -1, 4] in Range(L)? Why or why not?
- (b) Consider the linear Transformation L: $M_{3\times 3} \rightarrow M_{3\times 3}$ given by

$$L(A) = A - A^{T}$$

where, A^{T} represents the transpose of the matrix A. Find the Ker(L) and Range(L) of the Linear Transformation, and verify

 $\dim(\operatorname{Ker}(L)) + \dim(\operatorname{Range}(L)) = \dim(\operatorname{M}_{3\times 3}).$

(c) Suppose that L: $V \rightarrow W$ is a linear Transformation. Show that if $\{L(v_1), L(v_2), ..., L(v_n)\}$ is a linearly independent set of n distinct vectors in W, for

P.T.O.

2033

6

- (b) Consider the linear Transformation L: $P_3(R) \rightarrow$
 - $M_{2\times 2}(R)$ given by

L(ax³ + bx² + cx + d)
$$\begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}$$
.

Find the matrix for L with respect to the standard basis for P_3 and $M_{2\times 2}$. Also, Find the dimension of Ker(L) and Range(L).

(c) Let L: $P_3 \rightarrow P_4$ be given by

 $L(p) = \int p, \text{ for, } p \in P_3.$

Where, $\int p$ represents the integration of p. Find the matrix for L with respect to the standard basis for P₃ and P₄. Use this matrix to calculate L(4x³ - 5x² + 6x - 7) by matrix multiplication. 2033

to all

. 6

2. (1) Define rank of a matrix. Find Rank of the matrix

3

- $\mathbf{A} = \begin{bmatrix} 3 & 5 & 2 \\ 4 & 2 & 3 \\ -1 & 2 & 4 \end{bmatrix}.$
- (5) Find all Eigen values corresponding to the matrixA. Also, find the eigenspace for each of the eigen

value of the matrix A, where $A = \begin{bmatrix} 12 & -51 \\ 2 & -11 \end{bmatrix}$.

(z) Let $A = \begin{bmatrix} 3 & 1 & -2 \\ 4 & 0 & 1 \\ -2 & 4 & -3 \end{bmatrix}$. Determine whether the

vector X = [5, 17, -20] is in row space of the matrix A. If so, then express X as a linear combination of the rows of A.

3. (a) Let V be a vector space. Let H and K be subspaces of V. Prove that H ∩ K is also a subspace of V. Give an example to show that H ∪ K need not be a subspace.

P.T.O.

- (b) Define linearly independent subset of a finite dimensional vector space V. Use Independent Test Method to find whether the set S = {[1,0,1,2], [0,1,1,2], [1,1,1,3], [-1,2,3,1] } of vectors in R⁴ is linearly independent or linearly dependent.
- (c) Define basis of a vector space V. Show that the subset {[1,0,-1], [1,1,1],[1,2,4]} of R³ forms a basis of R³.
- 5. (a) (i) Determine whether the following function is a Linear Transformation or not?

L: $\mathbb{R}^3 \to \mathbb{R}^3$ given by

 $L([x_1, x_2, x_3]) = [x_2, x_3, x_1].$

(ii) Suppose L: $\mathbb{R}^3 \to \mathbb{R}^3$ is a linear operator and

L[1,0,0] = [-2,1,0], L[0,1,0] = [3,-2,1] and L[0,0,1] = [0,-1,3].

- Find L[-3,2,4]. Give a formula for L[x, y, z], for any $[x, y, z] \in \mathbb{R}^3$.
 - P.T.O.

(b) Prove or disprove that the set S = { [1,2,1], [1,0,2], [1,1,0] } forms a basis of R³.

4

(c) Use the Diagonalization Method to determine whether the matrix A is diagonalizable. If so, specify the matrices D and P and verify that $P^{-1}AP = D$, where

$$\mathbf{A} = \begin{bmatrix} 19 & -48\\ 8 & -21 \end{bmatrix}.$$

4. (a) (i) Let $S = \{(x,y,z): x + y = z \quad \forall x, y, z \in R\}$. Show that S is a subspace of R^3 .

- (ii) Consider the vector space $M_{3\times 3}(R)$ and the sets
 - T_1 : the set of nonsingular 3×3 matrices

 T_2 : the set of singular 3×3 matrices.

Determine T_1 and T_2 are subspaces of $M_{3\times 3}(R)$ or not?