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(a) Determine the intervals of concavity and points of
inflection of the curve y = 3x° — 40x* + 3x - 20.
Also use both first and second derivative tests to
show that f(x) = x> — 3x + 3 has relative minimum

at x=1.

(b) Find asymptotes of the curve:
y3 - 2xy? —xly +2x3+ 2x2-3xy +x -2y +1=0.

(¢) Determine the intervals of concavity and points of
inflection of the curve y =e*. Also, show that the

points of inflection of the curve y=—(x-3),/(x-5)

lies on the line 3x=17.

(a) Sketch a graph of Y= 2.4 and identify the
X
locations of all asymptotes, intercepts, relative

extrema and inflection points.

(b) Locate the critical points and identify which critical
points are stationary points for the functions:
() f(x) = 4x*-16x2+17
(i) g(x) = 3x* + 12x
(iii) h(x) = 3x53-15x?3,

(¢) Trace the curve r = 2(1 + cos0).
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(a) (i) Establish that lim

7 7 does not exist.
x20 e/ +e”

(ii) Examine the continuity of the function

o if x<0

2

S5x-4 ,if 0<x<1

4x? -3x, if 1<x<2
3x+4 ,if x22

g(x)=

at x=0,1,2 and discuss their type of
discontinuities, if any.
P.T.O.
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(b) State Lagrange’s mean value theorem. Use it to

: 4 2 ;
(b) Differentiate tan]{ 2 J with respect to

1 —=x? show that
ool 2% X
S g b Also prove that if x¥ = e*?, then m < log(1 +x) < x, for all x>0.
dy log x

=, (c) Verify Cauchy’s mean value theorem for the

d 2
x (1+logx) following pair of functions:

(¢) Find the n'™ derivatives of f(x) = e* cos? bx and

. 1 1 ,

g(x) = sin5xsin3x. (i) f(x)=— and g(x)=; in the domain

X

[2.5):
i o
2. (a) If y=¢™" *, then show that

(1-x?)y_,,— (2n+ Dxy_,, - (n>+m?)y_= 0. Also (i1) f(x) = sin x and g(x) = cos x in the domain

find y_(0). — [0, m/2].
) Let u = oos [ X +y and it x2 + y2 (iii) f(x) = e* and g(x) = ¢ ™ in the domain [1.4].

| Jx +4Jy x+y )

Show ‘that 4. (a) Find the range of x for which the series
x@ +y§9~+lcotu =0 and xa_V+y6_V:tanV a+ax +ax?+..+ax"'+ .. is convergent, where

a is a nonzero real number. Verify whether the
(c) If V=r™ where r2 = x>+ y?+ z?2, then prove that
v v v
=i e =m(m+l)r . _ ) .
o'x 0%y 0z (b) Find the Taylor’s series for f(x) = sinx and
g(x) =cos x.

series 1+—+—+—+--- is convergent or not.
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3. (a) State and prove Rolle’s theorem. Verify it for the

function (c) Evaluate the following :

f(x) = x* — 6x2 + 11x — 6 in the domain [1,3]. j 0 1im(l— I ]
L x>0 x*  sin®x

: P.T.0.



