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2. This question paper is divided into three sections.

3. Use of simple calculator is allowed.
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SECTION A

Attempt any five of the following questions.
(5x8=40)
frafefas ¥ ¥ el dfa T @ I A

1. (a) A firm sells 2 brands X and 7 of a soap. The
outputs and prices are denoted by x, y and p, q
respectively. The demand functions of the two
brands are x = 100 — 2p + 5q and y = 80 + 4p -
3q. Suppose brand X sells for 15/unit and Y for
12/unit. Calculate the total revenue of the firm.
Estimate the approximate change in revenue if
the prices are increased by 1/unit for X and 1.5/
unit for Y and compare it with the actual change

in revenue.

(b) Find the domain and plot it for the following
function:

Z=,x+y—-vx-3 (4+4)
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(@) 3t n B MN-gowaew Waw T | far = @ &

T3 - 2T2 + T — I = O__(null matrix)

nxn

(i) SRaw whww & @ &, qEa W=
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13. (a) By drawing diagrams (or by making precise
algebraic arguments), determine whether the

following set is convex.

{(x,y): y 2 €%}

(b) Solve the competitive firm’s profit maximizing use

of labour and capital for the case where,
Y = L%2K%¢, p=100, w=10, and r=20.

Find the optimum values of K, L and n. Also,
show that the solution is true maximum.

(3+7)
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(b) Consider a non-singular matrix T of order n such

that

T2 -2T*+ T - I = O_,_(null matrix)

nxn

(i) Use the above equation, prove that

T =

(ii) Show that, if A2 = T then A = (T — 7)!

for some matrix A. (5+5)
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Z=\X+y-vx-3

2. Suppose Firm X wishes to manufacture three SUVs
in its plants at A and B using its labour force of L
persons. Suppose the firm allocates the total labour
force in the proportion a and 1 — a (0 < a < 1) to
the plants at A and that at B respectively and hence
produces the total outputs of the three products (as
measured in 100s of units) given by the vector

10 6
al 4 |+(1-a)[10
8 10
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Given the above information, answer the following

questions :

(a) Is it possible for the firm to produce either of the
following output vectors if outputs cannot be

thrown away?

8
G |7
9
9
(i) |7
9

(b) How do your answers to part (a) change if outputs

can be thrown away?

(c) What will be the revenue maximizing choice of
the fraction a and how will it depend upon the
selling prices (p, p, p,;) of the three SUVs?
What condition must be put on the prices so that

both the plants are used by the firm? (3+1+4)
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Xy

i) f(xy)=>

(i) g(x,y) = 2lnx - Iny

- 12. (a) An upper triangular matrix is a square matrix if

all the elements below the main diagonal are zeros.
Consider a 3 x 3 upper triangular matrix A whose

non-zero elements are equal to a constant a.

(i) Find out A% and A® and show that they are

also upper triangular matrices.

(i) Show by induction that A"™ is an upper
triangular matrix and that trace (A") = 3a"
(where, trace is the sum of all the diagonal

elements).
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T i X3 + xyl."z

H = y? — 4x?

Currently x =4, y=1, T=68 and H = -7. Fearing
student protests, the principal wants to moderately
increase H to —2 and decrease T to 63. Determine
the values of x and y that will help the principal

achieve this objective.

(b) Are the following functions homogeneous? If yes,
what is the degree of homogeneity? Also check if

they are homothetic.

2 2

(i) f(x,y)=> ;;y
(i) g(x,y) = 2Inx — Iny (5+5)
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T = x3 + xy!'?

H = y? — 4x12
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aP“lz
where

3. (a) Compute the expression for
gz gEHT (XYY

(b) A production function is given by

v

Q(L,K)= A[a I° +(1—u)KP]E

Determine its degree of homogeneity and give the
conditions under which it will have increasing,
decreasing and constant returns to scale.

(4+4)

aP*CIz

(=) 2 v =isrer o TR X S8l z =Y (x +y).

ayq oxP
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SECTION C

Attempt any two of the following questions.
(2x10=20)

frfafea & @ el @ vl & S Af

(a) The principal of a college correctly estimates that
if the students are instructed to attend x hours of
class and do y hours of extracurricular activities,
they get a test score of T and achieve student
happiness level of H as given by the following

relations :

P.1.0.
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10. Consider the function f(x, y) = xe™(y? - 4y)

(a) Find all critical points of f and classify them by

using the second-derivative test.

(b) Show that f has neither a global maximum nor a

global minimum.

(c)Let S = {(x,y): 0<x <5, 0<y<4}. Prove that
f has global maximum and minimum points in S
and find them. (4+2+4)

1327 7
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(@) v See wer Q(LK)=Ala Lp+(1_a)1<v]§

B fear wimer 21 e e oY R PufRa «X sk
37 7o & ¥ e 789 g8 92q, wed 3k A de
w Rest 3m

(a) Find out the values of p for which the following

set of vectors is linearly independent.

u=(3,-1,3); v=(2,1,0) and w = (2,0, p).

(b) For each value of p find out a vector z that is
orthogonal to each of the above three vectors u,

v and w. ' (4+4)
(F) p & = 7 e R fw aRW & FefRea
aﬁiﬂuiﬁam:wa?il

u=@3,-1,3); v=(21,0) I w= (2,0, p).

(@) p & va&F a9 & fow vw Ry 2 7w A A
IREF A R u, v IR w A ¥ Rw @ R
A=A 2
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5. Suppose that an economy has two sectors: Light
Industry (Sector 1) and Heavy Industry (Sector 2)

with the following input requirements.

Light Industry requires 0.20 units of its own output

and 0.70 units of Heavy Industry’s output while Heavy
Industry requires none of its own output and 0.50
units of Light Indﬁstry’s output in order to produce 1
unit of output. The final demands for two industries

are 1500 and 4500 units respectively.

(i) Write down the Leontief system for the economy.

(i) Find the level of output that must be produced

in each industry in order to meet the final

demands.

(iii) Suppose the prices of both goods are Re. 1 per
unit each. What are the unit cost requirements
for the two goods? Are the productions

economically viable? (2+4+2)

e Ay o v s @ A dw § PR TR
FEEHAR D G T IAN (AT 1) AR W@ IAW
(F=T 2)1
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(%) frfafaa AW = eigenvalues IR F@fera

eigenvectors @ :

R
A=l st 1
0 <f.- 1

(@) = IRE Aew Reda 37 ok @ 2, @ ww

IgF AE P A &

9. (a) The function f of two variables is defined by

== 2 1
f(x,, x,) = x,xj. For what values of x, and x, is

this function quasiconcave?

(b) A discriminating monopolistic firm produces two

goods whose demand functions are :
P, =i Xy i T 360X,

where, x, and x, are the quantities of the two

1
goods produced and p, and p, the prices of a unit
of each good. Knowing that the cost function is
C(x,,x,) = 2x,x, + 15, solve the corresponding

profit maximizing problem and find x , x,, p, and
P, (5+5)

P.T.O.
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(i) form R & (v Tomd I @ &0 § =ew)
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8. (a) Find the eigenvalues and the associated

eigenvectors of the following matrix :

1 =10
A=|-1 2 -]
0" -1""1

(b) Is the above matrix diagonalizable? If so, find a
suitable matrix P. (5+5)
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6. (a) For the following function defined on R?, find the
critical points and classify them as maxima, minima
or saddle:

f(x,y) = x* + x2 — 6xy + 3y?

(b) Determine the concavity or convexity of the
following function. Also check for the quasi-

concavity and quasi-convexity.

f(x,y,2) = x2+y2+322—xy+2xz+yz (4+4)

P.T.O,
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f(x,y,2z) = x>+ y*+ 322 —xy + 2xz + yz

SECTION B

Attempt any three of the following questions.
(3x10=30)

fefafee ¥ ¥ &l &9 A & I aw )

7. (a) Find the levei curve for the function

2x -2y
Bny)s 5—e5 v

= at k = —1,0, 1, and plot them
X“+y“ +1

in the same graph.
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(b) A firm uses x hours of unskilled labour and y
hours of skilled labour each day to produce

21 :
Q(x,y)=60x3y? units of output. It currently

employs 64 units of unskilled and 27 units of skilled

labour.

(i) In what direction (expressed as a unit
vector) should it change (x,y) if it wants to
change output most rapidly from the current

level.

(i1) If the firm hires 1.5 units of extra skilled
labour, using calculus estimate the change
in unskilled labour that will keep the output
unchanged. (5+5)

Y R fwR=-1,0,1 W
X“+y +1

W T @ AN IR IA WE F we W)

(%) waw f(x,y)=

2 ~1

(@) T i JEET ® Q(x,y)=60xy} TR w
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