4

- 8 (a) Discuss Kruskal-Wallis test. How do you proceed if there are ties in the samples?
 - (b) The green yield (in kg) under four treatments is tabulated below:

No. of Plots	Treatments								
	1	2	3	4					
1	3.16	3.43	3.15	2.48					
2	3.38	2.88	2.70	2.38					
3	3.49	2.97	3.10	2.57					
4	2.86	3.28	2.81	2.85					
5	3.87	3.95	3.45	3.00					
6	4.00	3.86		2.47					
7	3.61	3.26							

Test the hypothesis of equality of treatments' effect using an appropriate non parametric test at 5% level of significance. ($\chi^2_{0.05,3}$ =7.815)

6,6

9 (a) Let X₁, X₂ be the *iid* sequence of random variables from normal distribution with mean μ and variance 144. In order to test H₀: μ = 48 against H₁: μ = 52, obtain the SPRT procedure of strength (α,β). Further, if α = 0.2, β = 0.4, obtain A and B. Complete the following table related to SPRT:

m	Random observation (x_i)	a _m	$s_m = \sum_{i=1}^m x_i$	r_m	Decision at m th stage
1	50.1697	10			
2	48.3278				
3	54.3337				
4	22.0001				

Also represent the SPRT for the above case graphically.

(ln(A) = 1.099 and ln(B) = -.693)

(b) Twelve 6th grade boys, who are underweight, are put on a special diet for one month. Each boy is weighed before and after the one month dietary plan. Following table was obtained:

Before	65	63	71	60	66	72	78	74	58	59	77	65
After	70	68	75	60	69	70	81	81	66	56	79	71

Using a suitable non parametric test, can you conclude that the dietary plan has been effective at 5% level of significance? Set up the (null and alternative hypotheses.

6,6

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1363

Unique Paper Code

: 32371602

Name of the Paper

: Multivariate Analysis and Non-

parametric Methods

Name of the Course

: B.Sc. (H) Statistics

Semester

: VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Question 1 is compulsory.
- Attempt five more questions selecting three questions from Section I and two questions from Section II.
- 4. Use of simple calculators is allowed.

1. Compulsory Question

- (a) Fill in the blanks
 - (i) The non-parametric test which is applicable for variable measured in nominal scale is
 - (ii) The Proportion of variance accounted by the first two principal components is given by
 - (iii) The limits of partial correlation coefficients are

- (iv) In the case of SPRT, if $\frac{1-\beta}{\alpha} \le \frac{L_{1m}}{L_{om}} \le \frac{\beta}{1-\alpha}$ then we
- (v) If $(X, Y) \sim BVN(0, 0, 4, 16, 0.8)$ then the distribution of Z = 4X + 7Y is

 $1 \times 5=5$

- (b) (i) Find the number of runs and the length of each run in the following data:
 ABBBBAABAAABBAAAABBB
 - (ii) If sample observations on vectors \underline{X}_1 and \underline{X}_2 is given by $\underline{x}'_1 = (10.5, 12.3, 14.4, 16.9, 17.8)$ and $\underline{x}'_2 = (20.6, 23.4, 21.0, 22.0, 26.5)$ respectively then obtain sample variance-covariance matrix S.

2×2=4

- (c) (i) Determine the parameters for the BVN distribution with pdf f(x,y) = k exp[-4x² - 6xy - 9y²]. (x,y) ∈ R² Hence calculate the value of k.
- (ii) For a SPRT of strength (α_1, β_1) show that $\alpha_1 \leq \frac{\alpha}{1-\beta}$ and $\beta_1 \leq \frac{\beta}{1-\alpha}$, given $A \approx \frac{1-\beta}{\alpha}$ and $B \approx \frac{\beta}{1-\alpha}$. Hence show that $\alpha_1 + \beta_1 \leq \alpha + \beta$.

3×2=6

Section I

- 2 (a) If $(X,Y) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ then prove that the marginal pdf's of X and Y are normal. However, the converse is not true.
 - (b) If $(X, Y) \sim B VN(0, 0, 1, 1, \rho)$ then show that
 - (i) X+Y and X-Y are independently distributed.
 - (ii) $Q = \frac{\chi^2 2\rho \chi \gamma + \gamma^2}{1 \rho^2}$ is distributed as χ^2 variate.

6,6

3 (a) Let f(x) and g(y) be the pdf's of the random variables X and Y, respectively with corresponding cdf's F(x) and G(x). Also let

$$h(x,y) = f(x)g(y)[1 + \alpha \{2F(x) - 1\}\{2G(y) - 1\}]; \ |\alpha| \le 1,$$

where α is a constant and h(x,y) is a g(y). If f(x) and g(y) represents standard normal distributions then prove that $Cov(X,Y) = \frac{\alpha}{p}$.

(b) Let $X \sim N_3(Q, E)$ with $\Sigma = \begin{pmatrix} 1 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 1 \end{pmatrix}$. Show that $\rho^2 < \frac{1}{2}$. Further, obtain the value of ρ such that $(X_1 + X_2 + X_3)$ and $(X_1 - X_2 - X_3)$ are independent.

- 4 (a) Assuming that X_1 , X_2 , X_3 and X_4 are measured from their respective means, obtain the equation of plane of regression of X_3 on X_1 , X_2 and X_4 .
 - (b) What are Principal Components? Discuss the properties of Principal Components. How do you obtain the Principal Components and their variances? What are it's uses?

6,6

- 5 (a) If $X \sim N_p(\underline{\mu}, \Sigma)$ then prove that the marginal distribution of sub-vectors $\underline{X}^{(1)}$ and $\underline{X}^{(2)}$ having q and (p-q) different components of X respectively, are multivariate normal.
 - (b) Consider the following factor model:

$$X_1 - \mu_1 = 0.5F_1 + 0.5F_2 + \in_1$$

$$X_2 - \mu_2 = 0.3F_1 + 0.3F_2 + \in_2$$

$$X_3 - \mu_3 = 0.5F_1 - 0.5F_2 + \in_3;$$

with
$$\psi = Cov(\varsigma) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Compute the variance covariance matrix Σ associated with random vector $\underline{X}' = (X_1, X_2, X_3)$. Also find out the communalities and hence show the decomposition of variances into communalities and specific variances.

7,5

Section II

- 6 (a) Let $X_1, X_2, ..., ...$ be *iid* sequence of random variables with pdf/pmf $f(x; \theta)$. Describe SPRT procedure for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$. Also define OC function and ASN function for the same.
 - (b) Construct SPRT for testing $H_o: \sigma^2 = \sigma_o^2$ against $H_1: \sigma^2 = \sigma_1^2$ ($> \sigma_o^2$) on the basis of a random sample drawn from $N(\mu, \sigma^2)$, where μ is known. Also obtain its OC and ASN functions.

(5,7)

- 7 (a) Discuss Kolmogorov-Smirnov test in detail. Mention the assumptions for which this test holds.
 - (b) The following data represents the two independent samples:

X	47	46	32	41	40	49	50	31	52	34	T	
Y	45	42	59	48	56	53	48	71	43	55	33	37

Using a suitable non-parametric test, check whether the two samples are drawn from the same population at 5% level of significance? Set up the null and alternative hypotheses. (tabulated $U_{10,\,12}(0.05)=29$).