Roll No.:

Unique Paper Code	: 32371202_OC
Name of the Paper	: Algebra
Name of the Course	: B.Sc. (H) Statistics Under CBCS
Semester	: II
Duration	: 3 hours
Maximum Marks	: 75 Marks

Instructions for candidates:

Attempt any FOUR questions. All questions carry equal marks. Show all the intermediate calculations and results. Use of simple calculator is allowed. 1. For the matrix $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$ find the non-singular matrices P and Q such that PAQ is

in normal form. Hence determine the rank of the matrix A.

2. For what values of λ , does the system of equations:

$$x + y + z = 1$$
$$x + 2y + 4z = \lambda$$
$$x + 4y + 10z = \lambda^{2}$$

have a solution? Solve them completely in each case.

3. Find the characteristic equation of the matrix

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

and verify Cayley Hamilton theorem. Hence compute A⁻¹.

- 4. Find the rank, index and signature of the quadratic form $2(x_1^2 + x_2^2 + x_3^2) + x_4^2 + 2x_1x_2 - 2x_2x_3 + 2x_3x_1.$
- 5. Find generalized inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 6 & 8 & 2 \\ 0 & 4 & 1 & 3 & 2 \\ -1 & 5 & 7 & 11 & 4 \end{bmatrix}$$

and verify AGA=A.

6. Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$

by partitioned method. Also, verify $AA^{-1} = I$.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/