- (d) Find the minimal solution to the following system of linear equations
	- $x + 2y z = 1$ $2x + 3y + z = 2$ $4x + 7y - z = 4$ (3+3.5,6.5,6.5,6.5)
- 6 (a) For the data $\{(-3, 9), (-2, 6), (0, 2), (1, 1)\}$, use the least squares approximation to find the best fit with a linear function and compute the error E.
	- (b) Let T be a linear operator on a finite dimensional inner product space V. Suppose that the characteristic polynomial of T splits. Then prove that there exists an orthonormal basis β for V such that the matrix $[T]_R$ is upper triangular.
	- (c) (i) Let T be a linear operator on \mathbb{C}^2 defined by $T(a, b) = (2a + ib, a + 2b)$. Determine whether T is normal, self-adjoint, or neither.
		- (ii) For $z \in \mathbb{C}$, define $T_z: \mathbb{C} \to \mathbb{C}$ by $T_z(u) = zu$. Characterize those z for which T_r is normal, self adjoint, or unitary.
	- (d) Let U be a Unitary operator on an inner product space V and let W be a finite dimensional ^U-invariant subspace of V. Then, prove that
		- (i) $U(W) = W$
		- (ii) W^{\perp} is U-invariant (6,6,3+3,3+3)

(3000)

I i

 \mathcal{A}_1

1359 6 6 6 Finis question paper contains 6 printed pages.

Your Roll No...............

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt 1 . of this question paper.
- $2.$ Attempt any two parts from each question.
	- (a) (i) If D is an Integral domain, prove that $D[x]$ is $1²$ an integral domain.
		- (ii) If R is a commutative ring, prove that the characteristic of $R[x]$ is same as the characteristic of R.
		- (b) Let $f(x) = 5x^4 + 3x^3 + 1$ and $g(x) = 3x^2 + 2x + 1$ in $Z_{7}[x]$. Compute the product $f(x)g(x)$. Determine the quotient and the remainder upon dividing $f(x)$ by $g(x)$.

P.T.O.

- (c) Let F be a field and let $I = \{a_n x^n + a_{n-1} x^{n-1} + \dots \}$ $+a_0|a_i \in F$ and $f(1) = a_n + ... a_0 = 0$. Prove that I is an Ideal of F[x] and find a generator of I.
- (d) Let $R[x]$ denote the ring of polynomials with real

coefficients. Then prove that $\frac{R[x]}{\langle x^2+1 \rangle}$ is

isomorphic to the ring of complex numbers. $(3+3.5,6.5,6.5,6.5)$.

(a) (i) Let F be a field and $p(x) \in F[x]$ be irreducible over F. Prove that $\langle p(x) \rangle$ is a maximal ideal in $F[x]$. 2.

(ii) Show that,
$$
\frac{Z_2[x]}{\langle x^3+x+1 \rangle}
$$
 is a field with 8

 \mathfrak{g}_i

ğ,

elements

(b) Determine which of the polynomials below are irreducible over Q.

$$
(i) \ 3x^5 \, + \, 15x^4 \, - \, 20x^3 \, + \, 10x \, + \, 20
$$

(ii)
$$
x^4 + x + 1
$$

(c) In integral domain $Z\left[\sqrt{-3}\right]$, prove that $1+\sqrt{-3}$ is irreducible but not prime.

1359 2 359 5 1359

5 (a) Show that in a complex inner product space V over field F. For $x, y \in V$, prove the following identities

(i)
$$
\langle x, y \rangle = \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2
$$
 if $F = R$
\n(ii) $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k ||x + i^k y||^2$ if $F = C$, where $i^2 = -1$.

(b) Let V be an inner product space, and let $S = \{v_1, v_2, ..., v_n\}$ be an orthonormal subset of V. Prove the Bessel's Inequality :

$$
\|x\|^2 \geq \sum_{i=1}^n \left|\left\langle x, v_i\right\rangle\right|^2 \text{ for any } x \in V.
$$

Further prove that Bessel's lnequality is an equality if and only if $x \in span(S)$.

(c) Let $V = P₂(R)$, with the inner product

$$
\langle f(x), g(x) \rangle = \int_{0}^{1} f(t)g(t)dt
$$

and with the standard basis $\{1, x, x^2\}$. Use Gram-Scmidth process to obtain an orthonormal basis β of $P_2(R)$. Also, compute the Fourier coefficients of $h(x) = 1 + x$ relative to β .

$$
P.T.O.
$$

₽ Ş.

- (d) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain. $(3+3,3+3,6,6)$
- $3₁$ (a) Let $V = P_i(R)$ and V^* denote the dual space of V. For $p(x) \in V$, define

$$
f_1, f_2 \in V^* \text{ by } f_1(p(x)) = \int_0^1 p(t) dt \text{ and } f_2(p(x)) =
$$

$$
\int_0^2 p(t) dt.
$$
 Prove that $\{f_1, f_2\}$ is a basis for V^{*}
and find a basis for V for which it is the dual basis.

(b) Let W be a subspace of finite dimensional vector space V. Prove that

 $dim(W) + dim(W^{\circ}) = dim(V)$, where W° is annihilator of W.

(c) Let T be a linear operator on $M_{n \times n}(R)$ defined by $T(A) = A^t$. Show that ± 1 are the only eigenvalues of T. Find the eigenvectors corresponding to each eigenvalue. Also find bases for $M_{2\times2}(R)$ consisting of eigenvectors of T.

P.T.O.

 δ

 \sim \sim

- (d) Let T be a linear operator on \mathbb{R}^3 defined by $T(a, b, c) = (3a + b, 3b + 4c, 4c)$. Show that T is digonalizable by finding a basis for $R³$ consisting of eigen vectors of T. (6.5,6.5,6.5,6.5)
- 4 (a) Let T be a linear operator on finite dimensional vector space V and let W be the T-cyclic subspace of V generated by a non-zero vector $v \in V$. Let $k = dim (W)$. Then prove that $\{v, T(v), \ldots \ldots \}$ $T^{k-1}(\nu)$ is basis for W.
	- (b) State Cayley Hamilton Theorem. Verify the theorem for linear operator T: $R^2 \rightarrow R^2$ defined by $T(a, b) = (a + 2b, -2a + b)$.

ź.

- (c) Let T be a linear operator on \mathbb{R}^3 defined by $T(a, b, c) = (3a - b, 2b, a - b + 2c)$. Find the characteristic polynomial and minimal polynomial of T.
- (d) (i) Let T be an invertible linear operator. Prove that a scalar λ is an eigen value of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
	- (ii) Prove that similar matrices have the same characteristic polynomial. (6,6,6,3+3)