Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351201_OC
Name of Paper	: C 3-Real Analysis
Semester	: II
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

Q1. Find the infimum and supremum, if they exist, of the following subsets S_i (i = 1,2,3). Justify your answer in each case:

$$S_1 = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$
$$S_2 = \left\{ \frac{\sqrt{2}}{n} : n \in \mathbb{N} \right\}$$
$$S_3 = \left\{ \frac{1}{n} + 1 : n \in \mathbb{N} \right\}$$

Let *S* be a non-empty bounded subset of \mathbb{R} . Let $a \in \mathbb{R}$ and define a set $a - S = \{a - s : s \in S\}$. Prove that a - S is a bounded set and $\sup(a - S) = a - \inf S$.

Q2. Let $S = \{s \in \mathbb{R}: 0 \le s \text{ and } s^2 < 3\}$. Show that the set S has a supremum in \mathbb{R} . If $x = \sup S$, prove that x > 0 and $x^2 = 3$. What is inf S?

Let *u* and *v* be real numbers with u < v. Show that there exists a rational number *r* such that $u < \sqrt{3} r < v$.

Q3. Discuss convergence or divergence of the following sequences. If convergent, find the limit of the sequence (x_n) using ϵ - definition and if divergent, give reason for the same:

(i)
$$x_n = \frac{2n+3}{3n+7}$$
 (ii) $x_n = \frac{n}{(1-n)(1+n)}$ (iii) $x_n = \frac{2^n+4^n}{3^n}$

Are these sequences bounded? Justify your answer in each case.

If (x_n) is a convergent sequence with $x_n \ge 2$ for all $n \in \mathbb{N}$, prove that $\lim(x_n) \ge 2$.

Q4. Using the definition of Cauchy sequence, establish the convergence or divergence of following sequences

(i)
$$\left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots - \dots + \frac{1}{n!}\right)$$
 (ii) $(\ln n^2)$ (iii) $((-2)^n)$

Show that a sequence (x_n) defined as

$$x_{n+1} = \frac{x_1 = 1}{\frac{x_n + 3}{5}}, \qquad n \ge 1$$

is convergent and find its limit.

Q5. Check the convergence or divergence of the following series. Clearly specify the result being used: T_{2}^{2}

(i)
$$\sum_{n=1}^{\infty} e^{-n^2}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{\log n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{n+1}{2^{n}}$$

(iv)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n-1}\right)^{n^{2}}$$

Q6. For each of the following, determine whether the series converges absolutely, converges conditionally, or diverges.

(i)
$$\sum_{n=1}^{\infty} \frac{2^n + n}{2^n - n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(\sin n\alpha + \cos^2 n\alpha)}{2^n - 1}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 100^n}{n!}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{n!}{n-\log n}$$