(d) Given
$$\frac{dy}{dt} = 4e^{0.8t} - 0.5y$$
, $0.5 < t < 1.5$, $h = 0.5$,
y(0) = 2. Find approximate solution using Heun's method. (6.25)

6. (a) Calculate $\int_{1}^{2} \frac{dx}{x^{2}}$ using Richardson extrapolation.

(b) Evaluate $\int_{1}^{2} e^{x} dx$ using Simpson's rule taking $h = \frac{1}{2}$. Find a bound on the error and compare it

with the exact solution. (6.25)

(c) For the given data, find f''(1.05): (6.25)

х	1.00	1.01	1.02	1.03	1.04	1.05
f(x)	1.27	1.32	1.38	1.41	1.47	1.52

(d) Use Euler's method with step-size h = 0.3 to compute the approximate y-value y(0.9) of the solution of the initial value problem (6.25)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2, \quad y(0) = 1.$$

[This question paper contains 6 printed pages.]

	Your Roll No
Sr. No. of Question Paper :	2597 A
Unique Paper Code :	32355402-OC
Name of the Paper :	GE-4 Numerical Methods
Name of the Course :	Generic Elective CBCS (Other than Maths(H.))
Semester :	IV
Duration : 3 Hours	Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Use of Scientific calculator is allowed.
- 3. All questions are compulsory. Attempt any two parts from each question.
- 4. Each question carries equal marks.
- 1. (a) Perform three iterations of the Bisection method to find a root of the equation f(x) = $1.05 - 1.04x + \ln x = 0$. Also represent the root graphically. (6.25)

(100)

(6.25)

P.T.O.

2

- (b) Write out the Newton form of the interpolating polynomial for $f(x) = e^x$ that passes through the points (-1, e^{-1}), (0, e^0), (1, e^1). Also, evaluate f(0.5) and find the approximate error. (6.25)
- (c) Find a root of the equation $f(x) = \sin x (2 + x^3) = 0$ by applying Newton Raphson method. Start with x(0) = -1.25 as the initial approximation and perform three iterations. (6.25)
- (d) Perform three iterations of Regula-Falsi method to find the root of the equation $\cos x - x = 0$ in the interval (0,1). (6.25)
- (a) Define rate of convergence of an iterative method.
 Determine the rate of convergence of the Secant method. (6.25)
 - (b) Find the smallest positive root of the equation $x e^{-x} = 0$ using the Secant method. Perform three iterations. (6.25)
 - (c) Construct the interpolating polynomial that fits the data using the Gregory-Newton Forward Difference interpolation. Hence evaluate the values of f(x) at x = 0.15 and 0.25. (6.25)

х	0	0.1	0.2	0.3
f(x)	-1.5	-1.27	-0.98	-0.64

17

\$

5

(d) Using Newton's Forward difference formula, find the polynomial f(x) satisfying the following data:

x	0	1	2	3
f(x)	1	2	1	10

- Hence find f(0.5).
- 5. (a) Find $\int_0^5 \frac{dx}{1+x^2}$ using trapezoidal rule taking h = 1. (6.25)
 - (b) Use Romberg's method to compute $\int_{4}^{5.2} \log x \, dx$ taking the data : (6.25)

x	4	4.2	4.4	4.6	4.8	5.0	5.2
log _e x	1.3863	1.4351	1.4816	1.526	1.5686	1.6094	1.6486

(c) Obtain the piecewise linear interpolating polynomial for the function f(x) defined by the data :

x	0	2/3	1	2
f(x)	4	-4	-7 / 2	-1/2

Hence estimate the values of f(1/2) and f(3/2). (6.25)

P.T.O.

(6.25)

-

(d) Use the formula
$$f'(x) = \frac{f(x) - f(x - h)}{h}$$
 to

approximate the derivative of $f(x) = \sin x$ at $x = \pi$, taking h = 1,0.1,0.01 and 0.001. (6.25)

3. (a) Find the inverse of the following matrix using the Gauss-Jordan method : (6.25)

3	-1	2
1	1	2
2	-2	-1]

(b) Use finite difference method to solve the Boundary value problem

$$y''(x) = 4(y-x), 0 \le x \le 1,$$

with $y(0) = 0, y(1) = 2$ and $h = 0.4.$ (6.25)

(c) Perform three iterations of Gauss-Seidal method for the following system of equations:

$$2x - y = 7$$
,
 $-x + 2y - z = 1$,
 $-y + 2z - 1$,

using initial approximation (0, 0, 0). (6.25)

P.T.O.

- 4
- (d) Approximate the following integral using Gaussian

quadrature method with
$$n = 2 \int_{1}^{1.5} x^2 \ln(x) dx$$
.
(6.25)

 (a) Solve the following system of equations using Gauss-Jacobi method:

$$4x + y + z = 2,$$

 $x + 2y + 3z = -4,$
 $x + 5y + 2z = -6.$

Perform three iterations using initial approximation (0.5, 0.5, -0.5). (6.25)

(b) Solve the following system of equations by Gauss Elimination method: (6.25)

$$x + 2y + 3z = 1,$$

 $x + 3y + 5z = 2,$
 $2x + 5y + 9z = 3.$

(c) Show that :

(6.25)

(i) $(1+\Delta)(1-\nabla)=1$,

(ii)
$$\mu \delta = \frac{\Delta + \nabla}{2}$$
.