$$
\epsilon
$$

(d) Given
$$
\frac{dy}{dt} = 4e^{0.8t} - 0.5y
$$
, $0.5 < t < 1.5$, $h = 0.5$,
\n $y(0) = 2$. Find approximate solution using Heun's method. (6.25)

6. (a) Calculate $\int_1^2 \frac{dx}{x^2}$ using Richardson extrapolation.

(6.2s)

(b) Evaluate $\int_1^2 e^x dx$ using Simpson's rule taking $h=\frac{1}{2}$. Find a bound on the error and compare it with the exact solution. (6.25)

(c) For the given data, find $f''(1.05)$: (6.25)

(d) Use Euler's method with step-size h ⁼ 0.3 to compute the approximate y-value y(0.9) of the solution of the initial value problem (6.2s)

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = x^2, \quad y(0) = 1.
$$

 \bullet [This question paper contains 6 printed pages.]

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Use of Scientific calculator is allowed.
- 3. All questions are compulsory. Attempt any two parts from each question.
- 4. Each question carries equal marks.
- (a) Perform three iterations of the Bisection 1. method to find a root of the equation $f(x) =$ $1.05 - 1.04x + \ln x = 0$. Also represent the root graphically. (6.25)

(100) P.T.O

- (b) Write out the Newton form of the interpolating polynomial for $f(x) = e^x$ that passes through the points $(-1, e^{-1})$, $(0, e^{0})$, $(1, e^{1})$. Also, evaluate $f(0.5)$ and find the approximate error. (6.25)
- (c) Find a root of the equation $f(x) = sinx (2 + x^3) = 0$ by applying Newton Raphson method. Start with $x(0) = -1.25$ as the initial approximation and
nector three iterations (6.25) perform three iterations.
- (d) Perform three iterations of Regula-Falsi method to find the root of the equation $cos x - x = 0$ in the interval $(0,1)$. (6.25)
- (a) Define rate of convergence of an iterative method. Determine the rate of convergence of the Secant method. (6.25) 2.
	- (b) Find the smallest positive root of the equation $x - e^{-x} = 0$ using the Secant method. Perform three iterations. (6.25)
	- (c) Construct the interpolating polynomial that fits the data using the Gregory-Newton Forward Difference interpolation. Hence evaluate the values of $f(x)$ at $x = 0.15$ and 0.25. (6.25)

2597

 $\frac{1}{2}$ $\frac{1}{2}$

5

(d) Using Newton's Forward difference formula, find the polynomial f(x) satisfying the following data:

- Hence find $f(0.5)$. (6.25)
- 5. (a) Find $\int_0^5 \frac{dx}{1+x^2}$ using trapezoidal rule taking h = 1. (6.2s)
	- (b) Use Romberg's method to compute $\int_{4}^{5.2}$ taking the data : log x dx (6.2s)

(c) Obtain the piecewise linear interpolating polynomial for the function $f(x)$ defined by the data:

Hence estimate the values of $f(1/2)$ and $f(3/2)$. (6.2s)

P.T.O.

 $\frac{1}{2}$

(d) Use the formula
$$
f'(x) = \frac{f(x) - f(x - h)}{h}
$$
 to

approximate the derivative of $f(x) = \sin x$ at $x = \pi$, taking $h = 1, 0.1, 0.01$ and 0.001 . (6.25)

³ (a) Find the inverse of the following matrix using the Gauss-Jordan method: (6.25)

(b) Use finite difference method to solve the Boundary value problem

$$
y''(x) = 4(y - x), 0 \le x \le 1,
$$

with $y(0) = 0$, $y(1) = 2$ and $h = 0.4$. (6.25)

(c) Perform three iterations of Gauss-Seidal method for the following system of equations:

$$
2x - y = 7,
$$

-x + 2y - z = 1,
-y + 2z - 1,

using initial approximation $(0, 0, 0)$. (6.25)

P.T.O.

- 4
- (d) Approximate the following integral using Gaussian

quadrature method with
$$
n = 2 \int_1^{1.5} x^2 \ln(x) dx
$$
.
(6.25)

4 (a) Solve the following system of equations using Gauss-Jacobi method:

$$
4x + y + z = 2,
$$

$$
x + 2y + 3z = -4,
$$

$$
x + 5y + 2z = -6.
$$

Perform three iterations using initial approximation $(0.5, 0.5, -0.5).$ (6.25)

(b) Solve the following system of equations by Gauss Elimination method: (6.25)

$$
x + 2y + 3z = 1,
$$

$$
x + 3y + 5z = 2,
$$

$$
2x + 5y + 9z = 3.
$$

(c) Show that: (6.25)

(i) $(1+\Delta)(1-\nabla)=1$,

(ii)
$$
\mu \delta = \frac{\Delta + \nabla}{2}.
$$