Unique Paper Code	:	32341502
Name of the Course	:	B.Sc. (H) Computer Science
Name of the Paper	:	Theory of Computation
Semester	:	V
Year of admission	:	2019 and onwards

Duration: Three Hours

Maximum Marks: 75

Instructions for Candidates:

- i. Attempt any **FOUR** questions.
- ii. Each question carries equal marks.
- iii. Consider $\Sigma = \{a b\}$ for all the questions unless specified otherwise.
- 1. Consider the language L, of all the words of length four or more having first two letters same as last two letters.

For the above language, perform the following:

- Write all the words of L with the length five or less
- Write the number of words having length six
- Construct the regular expression
- Build Finite Automaton (FA)
- 2. Prove that it is true for all the regular languages that complement of a regular language is also regular.

Construct the deterministic finite automaton (DFA) that recognizes the same language as the non-deterministic finite automaton (NFA) given below and also describe the language recognized by it.

Convert the following transition graph into its equivalent regular expression:

- 3. Consider the following languages:
 - L_1 = Language of all the words having '**b**' at second position
 - L_2 = Language of all the words having no two consecutive *a*'s

Construct Finite Automaton FA_1 for L_1 , FA_2 for L_2 . Also construct regular expression and finite automata for the following:

- $L_1 + L_2$
- $L_1 \cap L_2$
- (L₁)*
- 4. For the language $L_3: a^{n+m}b^mc^n$; where $\Sigma = \{a \ b \ c\}$ and $m, n \ge 1$, using pumping lemma, prove that the language is not regular. For the above language, do the following:
 - Write a context free grammar (CFG) for L₃, and construct parse tree for the word *aaabbc* using this CFG
 - Build a pushdown automaton (PDA) for L₃
- 5. Consider the following context free grammars (CFGs):

 $G_{1}: S \rightarrow bS | aX$ $X \rightarrow bS | aY$ $Y \rightarrow aY | bY | a | b$ $G_{2}: S \rightarrow XaX | bX$ $X \rightarrow XaX | XbX | \Lambda$ $G_{3}: S \rightarrow A | AA$ $A \rightarrow B | BB$ $B \rightarrow abB | b | bb$ $G_{4}: S \rightarrow BABABA$ $A \rightarrow a | \Lambda$ $B \rightarrow b | \Lambda$

For the above CFGs, perform the following:

- Write a regular expression for the language represented by G₁
- Convert G₂ into its equivalent CFG without null(**A**)-production
- Convert G₃ into its equivalent CFG without unit-production
- Convert G₄ into its equivalent Chomsky Normal Form (CNF)
- 6. Consider the language L₄: $a^n b^n c^n$ where $\Sigma = \{a \ b \ c\}$ and $n \ge 1$, and perform the following:
 - Build a turing machine M₁, that accepts L₄
 - Build another turing machine M₂, that accepts complement of L₄
 - Is L₄ a recursive language or recursively enumerable language? Justify your answer
 - Is L₄ a context-free language? Justify your answer.