[This question paper contains 4 printed pages.]

(b) Test for convergence the series whose nth term

is
$$\frac{n^{n^2}}{(n+1)^{n^2}}.$$

(c) Test for convergence and absolute convergence of the following series:

$$1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \dots$$

6. (a) Show that the function f defined by

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$$

is not integrable on any interval.

- (b) Show that every Monotonic function on [a, b] is integrable on [a, b]
- (c) Show that the function f(x) = [x], where [x] denotes the greatest integer not greater than x, is integrable over [0, 3] and $\int_0^3 [x] dx = 3$.

Your Roll No.....

Sr. No. of Question Paper: 522

Unique Paper Code : 62354443

Name of the Paper : Analysis (CBCS) (LOCF)

Name of the Course : B.A. (Prog.)

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question.
- 4. All questions carry equal marks.
- 1. (a) State the Completeness Property of $\mathbb R$. Show that

$$infS = 2 \text{ and } supS = \frac{1}{2}, \text{ where } S = \left\{1 - \frac{\left(-1\right)^n}{n} : n \in \mathbb{N}\right\}.$$

- (b) Let S be a non-empty subset of \mathbb{R} that is bounded above and let a be any number in \mathbb{R} . Prove that $\sup(a + S) = a + \sup S$.
- (c) Determine the points of continuity of greatest integer function $f(x) = [x], x \in \mathbb{R}$.
- 2. (a) Show that f(x) = 1/x is continuous on $\mathbb{R} \sim \{0\}$.
 - (b) Let $f: R \rightarrow R$ be defined as

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is not continuous at any point of \mathbb{R} .

- (c) Show that $f(x) = x^2$ is uniformly continuous on [-2, 2].
- 3. (a) State Cauchy's general principle of convergence.

Apply it to prove that the sequence $\langle a_n \rangle$ defined by

$$a_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n-2}$$
 is not convergent.

(b) Prove that a sequence of real numbers converges if and only if it is a Cauchy sequence.

(c) A sequence $\langle a_n \rangle$ is defined as follows:

3

$$a_1 = 1$$
, $a_{n+1} = \frac{4+3a_n}{3+2a_n}$, $n \ge 1$

Show that sequence $\langle a_n \rangle$ converges and find its limit.

4. (a) Define the sequence of partial sums of a series.

Using the sequence of partial sums, test the convergence of the following series:

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots$$

- (b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan \frac{1}{n}$ is convergent.
- (c) Test the series

$$1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \cdots$$

for convergence for all positive values of x.

5 (a) Test the convergence of the following series:

$$\sum\nolimits_{n = 1}^\infty {\sqrt {{n^4} + 1} - \sqrt {{n^4} - 1} } \ .$$