Name of Course	: Generic Elective
Unique Paper Code	: 32355301
Name of Paper	: GE-3 Differential Equations
Semester	: III
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Determine the constant A such that the differential equation

 $(Ax^2y + 2y^2)dx + (x^3 + 4xy)dy = 0$

is exact and solve the resulting exact equation.

Solve the following initial value problems:

- i)
- $\frac{dy}{dx} + \frac{4}{x}y = x^3y^2, \quad y(2) = -1, \ x > 0.$ $(3xy + y^2)dx + (x^2 + xy)dy = 0, \ y(1) = -1.$ ii)
- 2. Find the orthogonal trajectory of the family $y = c \sin x$ that passes through the point $(2\pi, 2)$. Also find the family of oblique trajectory that intersects the family of circles $x^2 + y^2 = c^2$ at an angle $\frac{\pi}{4}$. Show that the family of confocal conics $\frac{x^2}{\lambda + a^2} + \frac{y^2}{\lambda + b^2} = 1$, where *a* and *b* are fixed constants and λ is the parameter, is self orthogonal.
- 3. Show that the set $\{1, x, x^2\}$ of functions forms a basis for the solution set of a differential equation. Also, find such a differential equation.

Find the general solution of the second order equation $t^2y'' + 2ty' - 2y = 0$ given that $y_1(t) = t$ is a solution. Also solve the initial value problem

$$y''' + 3y'' - 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = \frac{1}{2}$.

- 4. Find the general solution of the following differential equations:
 - $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2x^2 + 3e^{2x}.$ i) ii) $\frac{\frac{dx^2}{dy}}{\frac{d^2y}{dx^2}} - 2\frac{\frac{dy}{dy}}{\frac{dy}{dx}} + y = e^x \log x.$

 - iii) $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} 3y = x^2 \log x.$

5. Find the partial differential equation arising from the equation $ax^2 + by^2 + z^2 = 1$, where z = z(x, y).

Find the general solution of the linear partial differential equation

$$(y + xu)p - (x + yu)q = x^2 - y^2.$$

Using $v = \ln u$ and v = f(x) + g(y), solve the equation

$$y^2 u_x^2 + x^2 u_y^2 = (xyu)^2, \ u(x,0) = e^{x^2}.$$

- 6. Reduce the following equations to canonical form and hence find their solutions
 - i) $u_x yu_y = 1 + u.$
 - ii) $y u_{xx} + (x + y)u_{xy} + x u_{yy} = 0, y \neq x.$
 - iii) $u_{xx} 4u_{xy} + 4 u_{yy} = 0.$