7967

4

where C is a constant, is non-stationary. Also show that the series of first differences $\{Y_t\}$ defined by $Y_t = X_t - X_{t-1}$ is a first-order MA process. Find the autocorrelation function of $\{Y_t\}$. (9,6)

6. (a) Show that the autocorrelation function of the m th order MA process given by

$$X_t = \frac{1}{m+1} \sum_{k=0}^{m} \in_{t-k}$$

is

$$\rho(k) = \begin{cases} 1 - \frac{k}{m+1}, & k = 0, 1, \dots m \\ 0 & k > m \end{cases}.$$

(b) Explain the Exponential Smoothening procedure for the purpose of forecasting in a time series.

(9,6)

(

- 7. Write notes on any two of the following :
 - (a) Box-Jenkins forecasting procedure
 - (b) Merits and limitations of trend fitting by the principle of least-squares.
 - (c) Fitting of Logistic curve by the method of three selected points. $(7\frac{1}{2},7\frac{1}{2})$

[This question paper contains 4 printed pages.]

Your Roll No	You	r Ro	II N	0			
--------------	-----	------	------	---	--	--	--

4/12/19

Sr. No. of Question Paper	:	7967 J
Unique Paper Code	:	32377905
Name of the Paper	÷	Time Series Analysis
Name of the Course	:	B.Sc. (Hons.) Statistics : DSE-1
Semester	÷	V
Duration: 3 Hours		Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions.
- (a) Stating clearly the reasons, identify with which component of a time series would you mainly associate each of the following:
 - (i) General decline in the infant mortality rate in India since independence.
 - (ii) Strike in a production facility, delaying production for 7 days.

2

- (iii) Heavy sales on the occasion of Christmas.
- (iv) Sales of grocery stores during the peak hours.
- (b) Explain giving one example each of the following in the context of time series :
 - (i) Secular trend
 - (ii) Seasonal component and
 - (iii) Random component (8,7)
- 2. (a) In the usual notations, prove that

 $\frac{1}{m_1 m_2 \dots m_r} [m_1] [m_2] \dots [m_r] y_0 = y_0 + \frac{m_1^2 + m_2^2 + \dots + m_r^2 - r}{24} \delta^2 y_0$

where $\frac{1}{m}[m]$ stands for the simple arithmetic mean of 'm' terms.

 (b) Explain the method of 'partial sums' for fitting the modified exponential curve to a given timeseries data. (9,6) 7967

 \bigcirc

(

- 3
- (a) What is meant by seasonal fluctuations of a time series? Describe the method of 'Ratio-to-Moving Averages' for measuring the seasonal variations, stating clearly the assumptions made.
 - (b) Given that a time series is composed of the trend, the oscillatory and the random components. Discuss the effect of elimination of trend on other components of the time series. (7,8)
- 4. (a) Explain variate-difference method for trend
 analysis. How is the appropriate order of
 differencing determined?
 - (b) Explain the terms (i) weak stationary, (ii) autocorrelation function and (iii) correlogram, with reference to a time series. (9,6)
- 5. (a) Show that the AR(2) process $X_t = X_{t-1} + cX_{t-2} + \epsilon_t$ is stationary provided -1 < c < 0. Find the autocorrelation function when c = -3/16.
 - (b) Show that the infinite-order MA process $\{X_t\}$ defined by

$$X_{t} = e_{t} + C(e_{t-1} + e_{t-2} + + ...)$$