3/12/ 2019 (Moraine

7503

All the state of the state of

7503

4. (a) Let x_1 and x_2 be the number of units possessing an

(4())

attribute in random samples of sizes n_1 and n_2 respectively drawn from two populations. Proportions (unknown) possessing the attribute in the two

populations are P₁ and P₂. If $p_1 = \frac{x_1}{n_1}$ and $p_2 = \frac{x_2}{n_2}$, derive a test of significance of difference between P₁ and P₂.

(b) Discuss type I and type II errors with examples. Also
 explain critical region and level of significance with an

6,6) State Chebychev's Inequality and expl.noitsrtzulli ficance.

Section II the a syster X as J

5. (a) Let x_1, x_2, \dots, x_n be independent observations from a normal population with mean μ and variance σ^2 . Let \overline{x} and s^2 be the sample mean and sum of squares of the deviations from the mean respectively. Let x be one more observation independent of previous ones.

Show that : Show that : $x = \overline{x} + \overline{x} \left[\frac{n(n+1)}{n+1} \right]^n$ or x = 1 and x = 1 This question paper contains 4+2 printed pages] Roll No. S. No. of Question Paper : 7503 motoring on entering : 32371301 (g m) 8 - X to 1 (g) ique Paper Code Name of the Paper : Sampling Distributions Name of the Course : B.Sc. (H) Statistics Semesters and prove the additivil or; perty of ohi seresters? **Duration: 3 Hours** Maximum Marks: 75 (Write your Roll No. on the top immediately on receipt of this question paper.) Question No. 1 is compulsory. Attempt six questions in all by selecting at least two questions from each section.

1. Attempt any five parts :

(a) Examine if WLLN holds for the sequence $\{S_n\}$, where $S_n = X_1 + X_2 + X_3 \dots + X_n$. $\{X_k\}$ are independent and identically distributed random variables with mean μ and finite variance.

- APIATON PLOCE LINS This cortains 4+2 preset pages] Show that the sample variance s^2 is a biased estimator of the population variance σ^2 . The population of σ^2 . (c) Let $X \sim B$ (n, p). Using Chebychev's inequality, find (an upper bound on P($X > \alpha n$) where $p < \alpha < 1$. Evaluate the bound for $p = \frac{1}{2}$, $\alpha = \frac{3}{4}$. State and prove the additive property of chi square (d)distribution. Durstion: 3 Hours Let X_1 and X_2 be a random sample of size 2 from (e) N(0, 1). Find the distribution of : (*i*) $(X_1 - X_2)/\sqrt{2}$ (*ii*) $(X_1 + X_2)^2/(X_2 - X_1)^2$.
 - (f) Define convergence with probability one and convergence in distribution.
 - (g) Consider a random sample of size *n* from a population with pdf f(x), where f(x) is symmetric at $x = \mu$. Show that $f_r(\mu + x) = f_{n-r+1} (\mu - x)$, where $f_r(x)$ is the p.d.f of the r^{th} order statistic. $5 \times 3 = 15$

(a) Find the pdf of r^{th} order statistic. Let $X_1, X_2, ..., X_n$ are *i.i.d* variates with distribution function given by : $F(x) = x^{\alpha}, i = 1, 2, ..., n, 0 < x < 1, \alpha > 0$ Show that, $X_{(i)}/X_{(n)}$, $(i = 1, 2, 3, ..., n^{-1})$ and $X_{(n)}$ are independently distributed.

(3)

2.

(b) State and prove Lindeberg-Levy central limit theorem (d) for *i.i.d.* random variables. 6,6

3. (a) State Chebychev's Inequality and explain its significance.

Let X have a pdf : 1 animal

(a) Let $\tau_1, \quad \xi_V > x > \xi_V^{-1}$, $\frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} = (x)f$ a normal population with mean is and variance of

Find the actual probability $P[|X-\mu| \ge (3/2)\sigma]$ and compare with the upper bound obtained by Chebychev's inequality.

(b) If X_i can have only two values i^{α} and $-i^{\alpha}$, with equal probabilities, show that the weak law of large numbers can be applied to the independent random variables $X_1, X_2, \ldots,$ if $\alpha < \frac{1}{2}$. 6,6

P.T.O.

7503

test of difference in proportions. 6,6

- 6. (a) If X_1 and X_2 are independently distributed, each as chi square variate with 2 degrees of freedom, find the p.d.f. of $Y = (X_1 - X_2)/2$.
 - (b) Define the F statistic. Prove that if $n_1 = n_2$, the median of F distribution is at F = 1 and the quartiles Q₁ and Q₃ satisfy the condition Q₁Q₃ = 1. 6,6
 - (a) Obtain mean deviation about mean for t-distribution with
 n d.f.
 - (b) Show that mean of the $F(n_1, n_2)$ distribution is independent of n_1 .
 - (c) If X is a chi-square variate with n d.f., then prove that for large n, $\sqrt{2X} \sim N(\sqrt{2n}, 1)$. 4,4,4

7503

8. (a) Let $X_1, X_2, ..., X_n$ be a random sample from a normal population with mean μ and variance σ^2 . Then, show that \overline{X} and $\frac{ns^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{x_i = \overline{x}}{\sigma}\right)^2$ are independently distributed. Also find the distribution of $\frac{ns^2}{\sigma^2}$. en that (b) Define Fisher's *t*-statistic. Compare the graph of the *t*-distribution with that of the standard normal distribution. 8,4

. of F distribution is at F = 1 and the quartiles Q, and

 Q_1 statisfy the condition $Q_1Q_2 = 1$. 6.6

Detaits mean deliftion about mean for t-distribution with

b) Show that mean of the $F(n_1, n_2)$ distribution is

independent of n_1 .

If X is a chi-square valuate with n d.f., then prove that

for large n, $\sqrt{2X} - N(\sqrt{2n}.1)$: 4,4,4

7503

6

600