(c) Find the cumulative distribution function for the following pdf:

$$f(x) = \begin{cases} 1/3 & 0 < x < 1 \\ 1/3 & 2 < x < 4 \\ 0 & \text{elsewhere} \end{cases}$$

Also find the median.

(a) Let X have the mgf

3.

4.

 $\mathbf{M}(t) = e^{t^2/2}, -\infty < t < \infty$

Find $E(X^{2k})$ and $E(X^{2k-1})$, for k = 1, 2, 3, ...

- (b) Show by stating all the conditions that the Binomial distribution can be approximated to the Poisson distribution.
- (c) Let X have the exponential pdf, f(x) = θ⁻¹ exp {-x/θ},
 0 < x < ∞, zero elsewhere. Find the moment generating function of X, and hence, the mean, and the variance of formation of X.

(i) Let X_1 and X_2 have the joint pdf

$$f(x_1, x_2) = 15x_1^2 x_2 \text{ if } 0 < x_1 < x_2 < 1$$

Find the marginal pdf of X_1 and X_2 and compute P($X_1 + X_2 \le 1$). This question paper contains 4+2 printed pages]

13/5/2019

m)

						0					
Roll N	Io. [
S. No. of Question Pap	er :	271	10			93		•			
Unique Paper Code	•	323	3576	607			• .			ю	
Name of the Paper		Pro	obab	oility	Th	eor	y &	Sta	atist	ics	
Name of the Course : B.Sc. (Hons.) Mathematics : DSE-3											
Semester	:	VI									
Duration : 3 Hours						Ma	xim	um	Mar	ks :	75
(Write your Roll No. on the	top im	medi	ately	on r	eceip	ot of	this	que	estion	n paj	per.)
In al	l there	are	six	que	stio	ns.					
Question No. 1 is con	npulso	ry a	nd i	it co	ntai	ns .	seve	n p	arts	of	3
marks each, out of w	hich a	iny j	five	part	s ar	e to	o be	att	emp	oted.	
In Question Nos. 2 to	6, atte	mpt	any	two	o pa	rts	fror	n <i>th</i>	iree	par	ts.
Eac	h part	carr	ies	6 m	arks.	1682 					
Use of sc	ientific	cal	cula	tor i	is al	low	ed.				•
1. (<i>i</i>) If C_1 , C_2 are	nd C ₃	are	ever	nts in	n C,	, the	en p	orov	e th	at	
$p_1 \ge$	$p_2 \ge$	<i>p</i> ₃	air.								
where $p_1 =$	P(C ₁)	+ P((C ₂)	+ P	(C ₃)	,		14			
<i>p</i> ₂ =	P(C1 (- C ₂) + 1	P(C ₂	~	C ₃) -	+ P(C ₁	n C	3), a	nd
<i>p</i> ₃ =	P(C ₁	n C	2 ∩	C ₃).							•
										P.T.	0.

(ii) Given the cumulative distribution function

(2)

F(x) = 0 if x < -1

= (x + 2)/4, if $-1 \le x < 1$, and

 $= 1 \text{ if } 1 \leq x,$

Compute :

- (i) $P(-1/2 < X \le 1/2);$
- (*ii*) P(X = 1).
- (*iii*) Let pmf p(x) be positive at x = -1, 0, 1 and zero elsewhere.

If $p(0) = \frac{1}{4}$, find $E(X^2)$.

- (iv) If the random variable X has a binomial distribution with the parameters n and θ , then compute the variance, σ^2 , of X.
- (v) Let F(x, y) be the distribution function of X and Y. For all real constants a < b, c < d, show that
 - $P(a < X \le b, c < Y \le d) = F(b, d) F(b, c)$

- F(a, d) + F(a, c)

(vi) Let
$$f_{1/2}^{(x_1/x_2)} = \begin{cases} \frac{c_1 x_1}{x_2^2}, 0 < x_1 < x_2, 0 < x_2 < 1 \\ 0, \text{ elsewhere} \end{cases}$$

be the conditional pdf of X_1 given $X_2 = x_2$.

Also let $f_2(x_2) = \begin{cases} c_2 x_2^4, & 0 < x_2 < 1 \\ 0, & \text{elsewhere} \end{cases}$

be the marginal pdf of X_2 .

Determine $C_1 \& C_2$ and hence the joint pdf of X_1 and X_2 .

- (vii) Prove that $P_{i,j}^{n+m} = \sum_{k=0}^{\infty} P_{i,k}^n P_{k,j}^m$, for all n, m and all i, j.
- 2. (a) Let $\{C_n\}$ be a decreasing sequence of events, then show that

$$\lim_{n \to \infty} P(C_n) = P(\lim_{n \to \infty} C_n) = P(\bigcap_{n=1}^{\infty} C_n)$$

- (b) In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines five bulbs, which are selected at random and without replacement.
 - (i) Find the probability of at least one defective bulb among the five.
 - (ii) How many bulbs should be examined so that the probability of finding at least one bad bulb exceeds 1/2 ?

2710

- (*ii*) Suppose the joint mgf, $M(t_1, t_2)$, exists for the random variables X_1 and X_2 . Then show that X_1 and X_2 are independent if and only if $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$; that is, the joint mgf is identically equal to the product of the marginal mgfs.
- (*iii*) Let X₁, X₂ be two random variables with joint $p(x_1, x_2) = \frac{1}{2^{x_1 + x_2}}$ for $1 \le x_i < \infty$, i = 1, 2, where x_1 and x_2 are integers, zero elsewhere. Determine the joint mgf of X₁, X₂ and show that X₁ and X₂ are independent random variables.

5. (i) Let X_1 , X_2 be two random variables with joint pdf $f(x_1, x_2) = 4x_1x_2$, if $0 < x_1 < 1$, $0 < x_2 < 1$,

= 0 elsewhere

- (a) Is $E(X_1, X_2) = E(X_1) E(X_2)$?
- (b) Find $E(3X_2 2X_1^2 + 6X_1X_2)$.
- (ii) Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by μ₁, μ₂ and σ₁², σ₂² respectively, and let ρ be the correlation coefficient between X and Y. If E(Y | X = x) is linear in x, then

$$E(Y | X = x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).$$

2710

P.T.O.

(*iii*) Let the random variables X and Y have the joint density function

$$f(x, y) = 1$$
, if $-x < y < x$, $0 < x < 1$
= 0, elsewhere

Show that, on the set of positive probability density, the graph of E(Y | x) is a straight line, whereas that of E(X | y) is not a straight line.

- 6. (a) (i) If X is a random variable with mean μ and variance σ^2 , then prove that for any k > 0 $P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{\kappa^2}$.
 - (*ii*) Find the smallest value of k in above inequality for which the probability that a random variable will take a value between $(\mu - k\sigma)$ and $(\mu + k\sigma)$ is at least 0.99.
 - (b) State the Central limit theorem. Let X_i, i = 1, 2, ..., 10 be independent random variables, each having uniformly distributed over (0, 1). Estimate P{Σ₁¹⁰X_i > 7}.
 - (c) An urn always contains 2 balls. Ball colors are red and blue. At each stage a ball is randomly chosen and then replaced by a new ball, which with probability 0.8 is the same color, and with probability 0.2 is the opposite color, as the ball it replaces. Define an appropriate Markov chain and if initially both balls are red, find the probability that the fifth ball selected is red.