7467

- 5. (a) State the class equation for finite groups. Find conjugacy classes of the quaternion group Q_8 and hence verify the class equation for Q_8 . 2+3+1.5
 - (b) Let p be a prime and P be a group of prime power order p^α for some α ≥ 1. Then prove that P has a non trivial centre. Deduce that a group of order p² is an Abelian group.

4+2.5

- (c) Let G be a non-Abelian group of order 231. Then prove that a Sylow 11-subgroup is normal and is contained in the centre of G. 2.5+4
- 6. (a) Let G be a group of order pq such that p < q and p does not divide (q -1). Then prove that G is a cyclic group. Hence deduce that a group of order 33 is cyclic.
 - (b) Define a simple group. Prove that groups of order 72 and 56 are not simple.
 - 1 + 2.5 + 3
 - (c) Let G be a group such that |G|=2n, where $n \ge 3$ is an odd integer. Then prove that G is not simple. 6.5

3500

Your Roll No.	edi karona avinuari
Sl. No. of Q. Paper	: 7467 J
Unique Paper Code	: 32351502
Name of the Course	: B.Sc.(Hons.) Mathematics
Name of the Paper	: Group Theory - II
Semester	ero he pre
Time : 3 Hours	Maximum Marks : 75
Instructions for Candidate	es:

[This question paper contains 4 printed pages]

niove that Aut/G) is farmorphic to Lin

12/12/19 (24)

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any two parts from each question.
- (c) All questions carry equal marks.
- 1. (a) Let Inn (D_8) denotes the group of inner automorphisms on the dihedral group D_8 of order 8. Find Inn (D_8) . 6
 - (b) Define inner automorphism of a group G induced by g∈G. Then prove that the set Inn(G) of all inner automorphism of a group G is a normal subgroup of the group Aut(G) of all automorphisms of G. 2+4

P.T.O.

- (c) Let G be a cyclic group of order n. Then prove that Aut(G) is isomorphic to U(n). Here Aut(G) denotes the group of automorphisms on G and U(n) = {m∈N : m < n and gcd (m, n) = 1} is a group under multiplication modulo n.
- 2. (a) Prove that every characteristic subgroup of a group G is a normal subgroup of G. Is the converse true ? Justify.
 - (b) Let G₁ and G₂ be finite groups. If (g₁,g₂)∈ G₁ ⊕G₂, then prove that
 - $|(g_1,g_2)| = lcm(|g_1|,|g_2)|)$
 - where |g| denotes order of an element g in a group G. 6
 - (c) Prove that D_8 and S_3 cannot be expressed as an internal direct product of two of its proper subgroups. Here D_8 and S_3 denote the dihedral group of order 8 and the symmetric group on the set {1, 2, 3} respectively. 3+3
- **3.** (a) State Fundamental Theorem for Finite Abelian Groups. Find all Abelian groups (upto isomorphism) of order 1176. 2+4
- (b) Let G be an Abelian group of order 120 and G has exactly three elements of order 2. Determine the isomorphism class of G.

6

- (c) For a group G, let the mapping from G×G → G be defined by (g, a) → gag⁻¹. Then prove that this mapping is a group action of G on itself. Also, find kernel of this action and the stabilizer G, of an element x∈G. 2+2+2
- 4. (a) Let G={1,a,b,c} be the Klein 4-group. Label the group elements 1,a,b,c as integers 1,2,3,4 respectively. Compute the permutation σ_a , σ_b and σ_c induced by the group element a, b, c respectively under the group action of G on itself by left multiplication. 6.5
 - (b) Let G act on a set A. If a,b∈A and b=g.a for some g ∈ G, then prove that G_b =gG_ag⁻¹ where G_a is the stabilizer of a . Deduce that if G acts transitively on A then kernel of the action is ∩_{g∈G} g G_ag⁻¹. 3+3.5
 - (c) Let G be a group acting on a non empty set A and $a \in A$. Then prove that the number of elements in orbit containing a is equal to index of the stabilizer of a. 6.5

3

²