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(b) Suppose L: R2 -+ R2 is a linear operator and

L(u, ll) = u, -31 and L([-2, 3]) : [-4, 2]. Express

L(0,0D and L([0, l]) as linear combinations ofthe v€ctos

[, 0] and [0, l]. 6

Let L:Rl -+ R2 be the linear transformation given(c)

L(lx, y, zl) = I-2x + 32, x + 2Y - zl

Find the matrix for L with respect to the bases :

B = {tr, -3, 21, t4,3, -31, 12, -3,21} for R3

and C = {(-2, *ll, [s, 3]] for R2. 6

(o) For the graphic figure below, use homogeneous

coordinates to find the new vertices after performing a

scaling about lhe point (3,3) with scale factors of 3 in

the x-direction and 2 in the y-direction' Then sketch the

final figure thar would resuh from this movement : 4+27:

(2, (5, 5)

(7,3)
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(a) If x and y are vectors in R3, then prove that :

ll,ll - lly ll < llx + y ll s llr ll + lly ll. 6%

(6) Let x ar,d y be nonzero vectors in R3. If x . y < 0, theh

prove that :
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ll,-vll >ll r ll'

Is the converse true ? Justiry. 6ta
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G) Solve the following system of linear equations using rhe

Causs-Jordan method :

3. (a) Let S =

4.

7\ (-2 -sl / I 4\l

'l [, ',J'[-, ojl 
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bt+\+3\=16

zx.t + 12\ 5xn = 5

3x,t+2tr+rc=16 6v,

2. (a) Define the rank of a matrix and determine the rank

of 2 x 2 real matrices. Use the Simplified Span Method

to find a simplified form for the vectorc in span(S). Is the

set S linearly independent ? Justiry. 4t/z+2

(b) Define a basis for a vector space. Show that the

set :

B : {[-1, 2, -31, 13, l, 4], [2, -r, 6]]

is a basis for Rl. 2+4%

(c) Using rank, find whether the non-homogeneous linear

system Ar = 6, where
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0(6) Prove that the matrix

(
6

has a solution or not. If so, find the solution. 4+2/,

(a) Consider the ordered basis S = {t!, 0, Il, [, l, 01,

t0, 0, l]) for R3. Find another orderEd basis T for R3 $ch

that the transition matrix from T to S is : 6

tt I 2\tlp.-, --12 , 
'1.

[-r -r t)

diagonalized.

(c) L€t V tie a vector space over & then for any vectoru

in V and every nonzero real number a, prove that

6av = 0 if and only ifv = 0.
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(b) Let L : R3 --l R3 be the linear operator given

by

'[l:]l I i r][:]
Find a basis for ke(L) and a basis for range (L), also

veriry the dimension theorem 4+2%

k) Show that a mapping L : P2 -+ P, given by

L@x)) = fix) + p'(,r) is an isomorphism, where P, is the

vector space of all polynomials of degree 51 2. 6V,

6 (a) Let W be the subspace of R3 whose vectors lie in the

plane 3.r - y + 42 = 0. Let v = t2, 2, -31€ R3- Find

projor v, and decompose v into w, + w2, where

w, e W and wu € wr. Is the decomposition

6unique ?

P.T.O.



(b) For the subspace W = {tay,:l e R3:2x-3l+:=0)
of R3, find a basis for W and the orthogonal complement

Wr. Also veriry that :

dim(W) + dim(Wl) : dim(R3). 4+2
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3 l,I '= [],) 
Find vector v(c) lf A=

satisrying the inequality :

lAv-bll S ll A:-b. 6

6D8t) 5,900


