Suppose L : $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ is a linear operator and (b) L([1, 1]) = [1, -3] and L([-2, 3]) = [-4, 2]. Express L([1, 0]) and L([0, 1]) as linear combinations of the vectors [1, 0] and [0, 1]. 6

2980

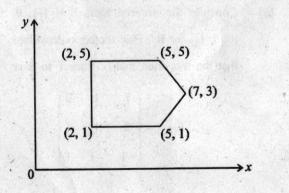
6

1.

(4)

- Let $L : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given (c) by :
 - L([x, y, z]) = [-2x + 3z, x + 2y z]
 - Find the matrix for L with respect to the bases : $B = \{[1, -3, 2], [-4, 3, -3], [2, -3, 2]\}$ for \mathbb{R}^3 and $C = \{(-2, -1], [5, 3]\}$ for \mathbb{R}^2 .
- For the graphic figure below, use homogeneous (a)coordinates to find the new vertices after performing a scaling about the point (3, 3) with scale factors of 3 in the x-direction and 2 in the y-direction. Then sketch the final figure that would result from this movement : 4+21/2

5.



FUPULL This question paper contains 4+2 printed pages

Roll No. S. No. of Ouestion Paper : 2980 IC 38 Unique Paper Code : 32355202 Name of the Paper Linear Algebra Generic Elective-Mathematics for Name of the Course Honours II Semester Maximum Marks: 75 **Duration : 3 Hours** (Write your Roll No. on the top immediately on receipt of this question paper.) Attempt all questions by selecting any two parts from each question. If x and y are vectors in \mathbb{R}^3 , then prove that : (a) $||x|| - ||y|| \le ||x + y|| \le ||x|| + ||y||.$ 61/2 Let x and y be nonzero vectors in \mathbb{R}^3 . If x . $y \leq 0$, then (b) prove that : ||x-y|| > ||x||.Is the converse true ? Justify. 61/2

P.T.O.

	linear equatio	, system o	onoung	e une	00111
		od :	an meth	ss-Jor	Gaus
		$+ 3x_3 = 1$	$x_1 + x_2$		
		$-5x_4 = 5$	$+ 12x_3$	2x	
6!		$x_{4} = 1$	$x_1 + 2x$		
ne the ran	and determi	f a matri	rank c	ne th	Defi
		-11	2 -2	(1	Lingth
		-11 -10 -25.	-1	2	of
		-25)	5 -4	(3	
	1 -I)	(7			ia 19
cannot b	$ \begin{array}{rrrr} 1 & -1 \\ -3 & 2 \\ 2 & -4 \end{array} $	natrix 1	t the m	ve th	Prov
	2 -4)	(1			
100					

(2)

2980

6

4.

In Mala Shared

(c)

2.

(a)

(b)

(c)

in V and every nonzero real number a, prove that

av = 0 if and only if v = 0.

(3)

2980

3. (a) Let
$$S = \left\{ \begin{pmatrix} 1 & 3 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} -2 & -5 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ -3 & 4 \end{pmatrix} \right\}$$
 be a subset

of 2 × 2 real matrices. Use the Simplified Span Method to find a simplified form for the vectors in span(S). Is the set S linearly independent ? Justify. 41/2+2

Define a basis for a vector space. Show that the (b) set :

 $B = \{[-1, 2, -3], [3, 1, 4], [2, -1, 6]\}$ is a basis for \mathbf{R}^3 . 2+41/2

Using rank, find whether the non-homogeneous linear (c) system Ax = b, where

 $\mathbf{A} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 2 \\ 0 & 1 & 3 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

has a solution or not. If so, find the solution. 4+21/2 Consider the ordered basis $S = \{[1, 0, 1], [1, 1, 0], \}$ (a) [0, 0, 1] for \mathbb{R}^3 . Find another ordered basis T for \mathbb{R}^3 such that the transition matrix from T to S is :

$$P_{S\leftarrow T} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

P.T.O.

1

6.

(b) Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator given by :

$$L\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{pmatrix} 3 & 1 & -3 \\ 2 & 1 & -1 \\ 2 & 3 & 5 \end{pmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}.$$

Find a basis for ker(L) and a basis for range (L), also verify the dimension theorem. $4+2\frac{1}{2}$

(c) Show that a mapping L : P₂ → P₂ given by L(p(x)) = p(x) + p'(x) is an isomorphism, where P₂ is the vector space of all polynomials of degree ≤ 2. 6¹/₂
(a) Let W be the subspace of R³ whose vectors lie in the plane 3x - y + 4z = 0. Let v = [2, 2, -3] ∈ R³. Find proj_{w[⊥]} v, and decompose v into w₁ + w₂, where w₁ ∈ W and w₂ ∈ W[⊥]. Is the decomposition unique ? 6

P.T.O.

2980

(6)

(b) For the subspace W = {[x, y, z] ∈ R³ : 2x - 3y + z = 0} of R³, find a basis for W and the orthogonal complement W[⊥]. Also verify that :

$$\dim(W) + \dim(W^{\perp}) = \dim(\mathbf{R}^3). \qquad 4+2$$

(c) If
$$A = \begin{pmatrix} 1 & -1 \\ 4 & 1 \\ 2 & 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix}$, $z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Find vector v

6 - 60 . Let W be the subspace of R⁴ whose vectors in the

6

satisfying the inequality : and and a ball

 $|| Av - b || \le || Az - b ||.$

T' SUCHAU

6