(Eve.)

- 7. Consider a MOVIEdatabase in which data is recorded about the movie industry. The data requirements are summarized as follows:
 - Each movie is identified by title and year of release. Each
 movie has a length in minutes. Each has a production
 company, and each is classified under one or more genres
 (such as horror, action, drama, and so forth). Each movie
 has one or more directors and one or more actors appear
 in it.
 - Actors are identified by name and date of birth and appear in one or more movies. Each actor has a role in the movie.
 - Directors are also identified by name and date of birth and direct one or more movies. It is possible for a director to act in a movie (including one that he or she may also direct).
 - Production companies are identified by name and each has an address. A production company produces one or more movies.

Identify:

2928

- (i) entities of interest.
- (ii) attributes for each entity.
 Draw an ER diagram for the above database. Also specify clearly all constraints on the relationships in the diagram.
 State clearly any assumptions that you make.

Roll No.		1 27				
			-07/0			

S, No. of Question Paper: 2928

Unique Paper Code

32345201

IC

Name of the Paper

Introduction to Database Systems

Name of the Course

General Elective for Honours:

Computer Science

Semester

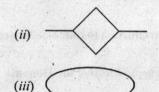
: II

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Q. No. 1 is compulsory. Attempt any four questions out of


Q. Nos. 2 to 7. Parts of a question must be answered together.

Marks are indicated against each question.

- 1. (a) Suggest appropriate data types for the following attributes:
 - (i) Marks in Examination
 - (ii) Name of an Employee
 - (iii) Date of Birth.

(b)	What	do the	following	geometrical	shapes	represent	ir
	an ER	Diagra	m ?				3

(i)

- (c) In each case, draw the geometrical shape to be used in an ER Diagram:
 - (i) Multivalued attribute
 - (ii) Weak entity type
 - (iii) Key attribute.
- (d) For each of the following commands, indicate whether it belongs to DDL or DML:
 - (i) Create table
 - (ii) Update table
 - (iii) Drop table
 - (iv) Delete from table.

b) Write SQL query for performing the following tasks on relation schema 4

EMPLOYEE (Eno, Ename, BDate, Address, Dno):

- (i) For displaying employee names having two 'a's in their names.
- (ii) For sorting the data of the above table namewise.

6. (a) EMP_DEPT

6

Ename	Id	Bdate	City	Dno	Dname	DmgrSsn
Kalpna	1	01-05-92	New Delhi	101	Research	3
Daksh	2	02-05-92	Hyderabad	101	Research	3
Nitin	3	11-05-95	Bangalore	102	Admin	4
Anita	4	04-07-92	Mumbai	102	Admin	5
Narayan	5	22-05-82	Hyderabad	105	Headquarter	5

Consider the above relational database schema and give an SQL query for each of the following:

- (i) a query that will result in Insertion Anomaly.
- (ii) a query that will result in Deletion Anomaly.
- (iii) a query that will result in Update Anomaly.
- (b) Differentiate between HAVING and WHERE clause with the help of an example.

(a) Draw ER diagrams for the following binary relationships.
 Specify at least three attributes for each entity and mention cardinality ratios also:

Entity	Type	Relationship	Entity Type

- (i) EMPLOYEE Works For COMPANY
- (ii) STUDENT Enrols For COURSES
- (b) Illustrate each of the following with the help of an ER diagram:
 - (i) One to many relationship, and
 - (ii) One to one relationship.
- 4. (a) Differentiate between the following:
 - (i) Primary key and candidate key.
 - (ii) Physical data independence and logical data independence.
 - (b) Is the relation given below in 1NF? If yes, justify, otherwise convert it into 1NF:

Dno	Dname	Dlocation
101	Administration	{Spring, Houston}
102	Research	Stanford
103	Accounts	Houston

(a) Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set of functional dependencies F = {AB → C, BD → EF, AD → GH, G → I, H → J}. What is the key for R? Decompose R into 2NF and then 3NF relations.

(e) For the given binary relationships, suggest the cardinality ratio of the relationship based on the general context of entity types and state the context clearly:

	Entity Type	Relationship	Entity Type
(i)	EMPLOYEE	Has	DEPENDENT
(ii)	EMPLOYEE	Works_on	PROJECT
(iii)	TEACHER	Teaches	STUDENT
(iv)	COLLEGE	Offer	COURSE
(v)	BANK	Has	MANAGER

(f) In the following relational database, point out the primary and foreign keys stating any assumptions that you make:

EMPLOYEE (ENumber, Ename, Email, Phone)

PROJECT (ProjectName, ProjectDescription, ProjectManager)
WORKS ON (ENumber, ProjectName, Hours)

(g) Given the following relations:

EMPLOYEE

DEPARTMENT

Eid	Ename	Salary	Dno	
1	Amit	3000	101	
2	Sumit	2000	102	
3	Jaspal	1000	103	
4	Rohit	4000	102	
5	Vikas	3000	102	

	Dno	Dname
San Contraction	101	Administration
	102	Research
	103	Accounts

What will be the output of the following queries? 6

- (i) select Dno, Count(*)
 fromEmployee
 group by Dno;
- (ii) select E.Ename, D.Dname
 fromEmployee E, Department D
 whereE.Dno=D.Dno;
- (iii) select count (Dno)
 fromEmployee;

(h) Consider the following Relational database schema:

Rollno	Name	Department	Marks
1	Ramesh	CS	94
2	Narayan	CS	75 -
3	Murthy	MS	62
4	Priya	MS	89
5	Garima	CS	78

Write SQL queries for the following statements:

- (i) Insert a new student <7, 'Priyanka', 'CS', 82> in the above database.
- (ii) Change the Department of 'Ramesh' to 'MS'.
- (iii) Delete the records where marks are less than 70. 6
- (a) Consider the relation STUDENT (RollNo, Name, Dept, Marks)

Write the following queries into SQL form:

- (i) Display the total number of students in each department.
- (ii) Display minimum, average and maximum marks of the class.
- (iii) Display the details of the students whose name starts with 'J'.
- (b) Write two advantages of DBMS over traditional file processing.