This question paper contains 3 printed pages.

Your Roll No.

Sl. No. of Ques. Paper	: 1388 F-7 5/11/12 morie
Unique Paper Code	: 2371501
Name of Paper	: Statistical Inference – I : B.Sc. (Hons.) Statistics (Erstwhile FYUP)
Semester	: V
Duration	: 3 hours
Maximum Marks	:75 non bes consider contracts to a sidem all de tester (a)

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

1. (a) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Examine whether:

$$T = \frac{1}{n} \sum_{i} |X_i - \mu|$$

is unbiased for σ . If not, obtain un unbiased estimator of σ . Also find efficiency of this unbiased estimator.

- (b) State and prove Cramer-Rao inequality. Under what conditions does equality hold? Explain its significance. 7,8
- 2. (a) Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with p.d.f.:

$$f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}, x > 0, \theta > 0$$

Obtain MVB estimator for θ . Hence find the variance of MVB estimator.

(b) State and prove sufficient conditions for consistency. In a random sample of size n from $N(\mu, \sigma^2)$, obtain consistent estimator of σ^2 when μ is known. 6,9

 (a) State and prove Factorization theorem for the existence of sufficient statistic. What is the advantage of this criterion over Fisher-Neyman criterion?

tion with picks

(b) Let Y₁ < Y₂ < < Y_n be the order statistics of a random sample of size n from the uniform distribution having p.d.f. :

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

Show that Y_n is complete sufficient for θ . Hence obtain MVU estimator for θ . 7,8

٠.

$$T = \alpha T_1 + (1 - \alpha) T_2$$

have minimum variance? Find the variance of T.

- (b) Explain the method of minimum Chi-square and modified minimum Chi-square. Under what conditions is it identical with the method of maximum likelihood estimation?
- 5. (a) Describe method of moments and find estimator of θ by the method of moments for:

$$f(x,\theta) = \begin{cases} \frac{1}{2}e^{-|x-\theta|}, & -\infty < x < \infty \\ 0, & \text{otherwise} \end{cases}$$

- (b) Explain the procedure of estimating the parameters by the method of maximum likelihood. Also mention all the properties of ML estimators. 7,8
- 6. (a) If X_1, X_2 is a random sample of size 2 from a distribution having p.d.f. :

$$f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}, \ 0 < x < \infty,$$

show that $Y_1=X_1+X_2$ is sufficient estimator for θ . Further show that $Y_2=X_2$ is an unbiased estimator for θ with variance θ^2 . Find $E(Y_2|Y_1=y_1)$ and compare its variance with that of Y_2 .

(b) In sampling from a Power Series distribution with probability function:

$$f(x, \theta) = \frac{a_x \theta^x}{\phi(\theta)}, \ x = 0, 1, 2 \dots$$

where a_x may be zero for some x. Show that ML estimator of θ is the root of the equation:

$$\overline{x} = \frac{\theta \phi'(\theta)}{\phi(\theta)} = \mu(\theta) \text{ or } \mu(\theta) = \overline{x}$$

8,7

7. (a) Distinguish between point estimation and interval estimation. Let X_1, X_2, \dots, X_n be a random sample of size *n* from rectangular distribution with p.d.f.

$$f(x, \theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

If R be the sample range and ε is given by $\varepsilon^{n-1}[n-(n-1)\varepsilon] = \alpha$, show that R and $\frac{R}{\varepsilon}$ are confidence limits for θ with confidence coefficient $(1-\alpha)$.

(b) Explain the method of constructing the confidence intervals for large samples by using likelihood approach. Using this approach, obtain 100(1-α)% confidence limits for the parameter θ of Poisson distribution.

