11/s/18 Morning

Your Roll No.

This question paper contains 4 printed pages.

Find (i)	significance	level of	the	test,	(ii)	power	of	the	tes
--------	----	--------------	----------	-----	-------	------	-------	----	-----	-----

 $(6\frac{1}{2},6)$

7. (a) Given a random sample from a population with pdf:

$$f(x, \theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

Show that $100(1-\alpha)$ % CI for θ is given by R and R/ ψ , where ψ is given by $\psi^{n-1}[n - (n-1)\psi] = \alpha$, and R is the sample range.

(b) Obtain $100(1-\alpha)$ % confidence limits (for large samples) for the parameter λ of the Poisson distribution:

$$f(x, \lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$
 (6, $6\frac{1}{2}$)

- 8. Write short notes on any *three* of the following:
 - i. Optimum properties of ML estimators
- ii. Method of moments
- iii. Optimum regions and sufficient statistics

iv. LR test and its properties.

S. No. of Paper: 6722HCUnique paper code: 32371401Name of the paper: Statistical InferenceName of course: B.Sc. (Hons.) StatisticsSemester: IVDuration: 3 hoursMaximum marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions by selecting three from each Section.

Section I

 (a) State and prove sufficient conditions for consistency. Give an example where these conditions hold. Are consistent estimators unique? Justify your answer.

(b) If X_1, X_2, \ldots, X_n constitute a random sample from uniform population U(0, β), show that $T_1 = (\frac{n+1}{n}) X_{(n)}$ is unbiased estimate for β . Find another unbiased estimate T_2 , (say) for β and compare efficiency of T_2 relative to T_1 .

 $(7, 5\frac{1}{2})$

(a) State and prove Rao-Blackwell theorem. Explain its significance in statistical inference.
P. T. O.

 $(4, 4, 4\frac{1}{2})$

0

2

0

(b) Let T_1 and T_2 be unbiased estimators of $\Upsilon(\theta)$ with efficiencies e_1 and e_2 respectively and ρ_{θ} be the correlation coefficient between them. Then show that:

.

3

۲

Ú.

 $\sqrt{e_1 e_2} - \sqrt{(1 - e_1)(1 - e_2)} \le \rho_\theta \le \sqrt{e_1 e_2} + \sqrt{(1 - e_1)(1 - e_2)}$ (6¹/₂, 6)

3. (a) Show that $Y=X_{(1)}$ the first order statistic of a random sample of size *n* from distribution with pdf:

$$f(x, \theta) = e^{-(x-\theta)}, \ \theta < x$$

is complete sufficient for θ . Using Lehmann Scheffe theorem, find MVUE for θ .

< 00

(b) Let X_1, X_2, \ldots, X_n be a random sample from the double Laplace distribution:

 $f(x, \theta) = \frac{1}{2}e^{-|x-\theta|}, \quad -\infty < x < \infty$

Obtain estimate of θ by using (i) Method of moments, (ii) Method of MLE. $(7\frac{1}{2}, 5)$

4. (a) Describe the method of minimum chi square and show that for large *n*, estimates obtained by minimum chi square are identical with ML estimates. When do you use modified minimum chi square?

(b) State Cramer-Rao inequality. Explain its significance. Under what conditions does inequality become equality? (c) Let X₁, X₂,, X_n be random sample from N(μ , σ^2) where μ is known. Obtain MVBE for σ^2 . (5, 4, 3 $\frac{1}{2}$)

Section II

(a) Define MP critical region and UMP critical region. Let X₁, X₂,, X_n be a random sample from a distribution that has pdf :

$$f(x, \theta) = \theta x^{\theta - 1}, \qquad 0 < x < 1$$

where $0 < \theta < \infty$. Using NP lemma, show that MP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 \ (\theta_1 > \theta_0)$ is given by the critical region

 $\{(x_1, x_2, \dots, x_n) / \prod_i x_i > \exp\left[-\chi_{1-\alpha, 2n}^2 / 2\theta_0\right]\}$

where $\chi^2_{1-\alpha,2n}$ is the lower α point of the χ^2 distribution with df = 2n.

(b) If X is a B(n, θ) r.v. and prior distribution of θ is a Beta distribution with parameters α and β , then show that posterior distribution of θ given X=x is Beta distribution with parameters $(x + \alpha)$ and $(n-x+\beta)$. (7, $5\frac{1}{2}$)

- 6. (a) Let X₁, X₂, ..., X_n be a random sample of size n from N(θ, σ²) where σ² is known. Develop LR test for testing H₀ : θ = θ₀ against H₁ : θ ≠ θ₀
 - (b) Let X have a pdf of the form:

$$f(x, \theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad 0 < x < \infty$$

to test $H_0: \theta = 2$ against $H_1: \theta = 4$. Use a sample X_1, X_2 of size 2 and critical region defined to be $w = \{(X_1, X_2): 9.5 \le X_1 + X_2 < \infty\}$. P. T. O