(

This question paper contains 4 printed pages]

Roll No.

S. No. of Question Paper : 117

Unique Paper Code : 32371109

Name of the Paper : Calculus

Name of the Course : B.Sc. (Hons.) Statistics

Semester : I

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory.

From the remaining, attempt *five* questions, selecting at least *one* from each section.

1. Attempt any five parts:

(a) Evaluate: $\lim_{h\to 0} \frac{[\log_e (1+2h) - 2\log_e (1+h)]}{h^2}$

(b) Examine the continuity of the function at x = 0:

$$f(x) = \begin{cases} \frac{e^{-1/x}}{1 + e^{1/x}}; & x \neq 0 \\ 1 & ; & x = 0 \end{cases}$$

P.T.O.

3×5

7. Solve any two of the following differential equations:

(a)
$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 20y = (x+1)^2$$

$$(b) \qquad \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^{3x}$$

(c)
$$(2x+3)^2 \frac{d^2y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x$$
 6,6

Section IV

8. Solve any two of the following partial differential equations :

(i)
$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$

(ii)
$$z^2(p^2 + q^2) = x^2 + y^2$$

(iii)
$$p(1+q^2) = q(z-a)$$
 6,6

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos x \cos 2y.$$

$$(D^2 + DD' - 6D'^2)z = y \cos x.$$

6.6

d.

()

- (c) Compute the value of $\Gamma(-3/2)$.
- (d) Show that:

$$\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x} dx dy = \frac{1}{2}.$$

(e) Solve:

$$\sqrt{(a^2+x^2)} \frac{dy}{dx} + y = \sqrt{(a^2+x^2)} - x.$$

(f) Solve the differential equation :

$$(4D^2 + 4D - 3)y = e^{2x}$$

- (g) By eliminating the constants, obtain the partial differential equation from the relation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- (h) Solve the partial differential equation:

$$z=p^2x+q^2y.$$

Section I

2. (a) If $y = x(x + 1) \log (x + 1)^3$, then prove that

$$\frac{d^n y}{dx^n} = \frac{3(-1)^{n-1} (n-3)! (2x+n)}{(x+1)^{n-1}} \text{ if } n \ge 3.$$

(b) Obtain the maximum or minimum value of u given by $u = x^3v^2 (1 - x - v)$.

- 3. (a) If $\theta = t^n e^{-r^2/4t}$, then find the value of *n* which will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}.$
 - (b) Find the position and nature of the double points on the curve: 6,6

$$y(y-6) = x^2(x-2)^3 - 9.$$

Section II

4. (a) Show that :

$$B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$$

(b) Evaluate: 6,6

$$\int_{0}^{1} \frac{x^{3}}{(x^{2}+1)(x^{2}+7x+12)} dx.$$

5. (a) Find the limit, when n tends to infinity of the sum

$$\sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}} \, \epsilon$$

(b) Change the order of integration in $\int_0^\infty \int_x^\infty \left(\frac{e^{-y}}{y}\right) dx dy$ and hence find its value.

Section III

6. Solve the following differential equations:

(a)
$$(D^3 + 1)y = \cos 2x$$

(b)
$$\frac{1}{y}\frac{dy}{dx} + \frac{x}{1-x^2} = xy^{-1/2}$$
.