Hermitian matrix, i)

ii) Real symmetric matrix, and

iii) Unitary matrix, are orthogonal.

inverse of :

(b) Define generalized inverse. Give an algorithm for finding

a generalized inverse of a symmetric matrix A. Hence find a g- $(6, 6\frac{1}{2})$

8. (a) Reduce the quadratic form :

$$21x_1^2 + 11x_2^2 + 2x_3^2 - 30x_1x_2 - 8x_2x_3 + 12x_3x_1$$

to the canonical form and hence show that it is positive semidefinite. Also find a non-zero set of values of x1, x2, x3 which make the form zero.

(b) Compute the inverse of the given matrix by the method of partitioning;

600

43.

13

This question paper contains 4 printed page

Your Roll No.

S. No. of Paper	: 6720	HC
Unique paper code	: 32371202	
Name of the paper	: Algebra	
Name of course	: B.Sc. (Hons.) Statistics	15.6
Semester	: П	
Duration	: 3 hours	
Maximum marks	: 75	

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all, selecting three questions from each Section.

SECTION 1

1.(a) Solve the equation

 x^{4} - 18 x^{3} + 136 x^{2} - 720x + 1600 = 0.

given that the product of two of its roots is equal to the product of the other two.

(b) Form an equation whose roots are the ratios of the roots α , β , γ of the equation $x^3 + qx + r = 0$. (6 ½, 6)

2. (a) Form a cubic equation whose roots are the values of α , β , γ given by the relation $\alpha + \beta + \gamma = 2$, $\alpha^2 + \beta^2 + \gamma^2 = 6$, $\alpha^3 + \beta^2 + \gamma^2 = 6$ $\beta^3 + \gamma^3 = 8$. Find the value of $\alpha^4 + \beta^4 + \gamma^4$.

P. T. O.

(b) Show that the set $\{1, x, 1+x+x^2\}$ is a linearly independent set of vectors in the vector space of all polynomials over the real number fields.

2

(c) Show that the set of vectors $\{(0, 1, 0), (1, 0, 1), (1, 1, 0)\}$ constitutes a basis of the real vector space R³. (6, 3, 3¹/₂)

3. (a) Let A be a skew symmetric determinant given by

$$A = \begin{vmatrix} 0 & x & y & z \\ -x & 0 & c & b \\ -y & -c & 0 & a \\ -z & -b & -a & 0 \end{vmatrix}$$

Show that A can be expressed as a square of a polynomial function of its elements.

b) Express the determinant

 $\frac{1}{\cos(\alpha - \beta)} \frac{\cos(\beta - \alpha)}{1} \frac{\cos(\gamma - \alpha)}{\cos(\gamma - \beta)}$ $\frac{\cos(\alpha - \gamma)}{\cos(\beta - \gamma)} \frac{\cos(\beta - \gamma)}{1}$

as a product of two determinants. Hence or otherwise show that it vanishes. $(6\frac{1}{2}, 6)$

4. (a) What are Echelon matrices? Reduce the matrix A to its echelon form and mark the pivot entries.

$$\mathbf{A} = \left(\begin{array}{rrrrr} 1 & 2 & 1 & 1 \\ 1 & 2 & 2 & -1 \\ 2 & 4 & 0 & 6 \end{array}\right)$$

(b) Show that the only real value of λ for which the following system of linear equations has non zero solutions is 6 and then solve the equations:

10

40

$$x + 2y + 3z = \lambda x$$

$$3x + y + 2z = \lambda y$$

$$2x + 3y + z = \lambda z$$

(6, 6¹/₂)

SECTION II

5. (a) A is a square matrix of order n with all elements equal to unity and B is a square matrix of order n with all diagonal elements equal to n and other elements n-r. Show that $A^2 = nA$. Deduce that $(B - rI) [B - (n^2 - nr + r)I] = O$.

(b) Find the value of adj (\mathbf{P}^{-1}) in terms of \mathbf{P} where \mathbf{P} is a nonsingular matrix and hence show $adj(\mathbf{Q}^{-1} \mathbf{B} \mathbf{P}^{-1}) = \mathbf{P} \mathbf{A} \mathbf{Q}$, given that $adj \mathbf{B} = \mathbf{A}$ and $|\mathbf{P}| = |\mathbf{Q}| = 1$. (6, 6¹/₂)

6. (a) If A is a square matrix and $(A - \frac{1}{2}I)$ and $(A + \frac{1}{2}I)$ are orthogonal, then prove that A is skew-symmetric and $A^2 = -\frac{3}{4}I$. Deduce that A is of even order.

(b) Find non singular matrices R and S such that RAS is in normal form, where:

 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$ Hence find rank of A. (6, 6¹/₂)

7. (a) Show that any two characteristic vectors corresponding to two distinct characteristic roots of a: P. T. O

3