This question paper contains 4 printed pages

105118

Your Roll No.

S. No. of Paper	: 6633	HC
Jnique paper code	: 32351402	
Name of the paper	: Reimann Integration an	d Series of
	Functions	
Name of course	: B.Sc. (Hons.) Mathemat	ics
Semester	: IV	
Duration	: 3 hours	2.101.29
Aaximum marks	: 75	trade and
and the second		

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question. All questions are compulsory.

Q.1 (a) Prove that a bounded function f on [a, b] is integrable if and only if for each $\varepsilon > 0$, \exists a partition P of [a, b] such that U(f, P) - L(f, P) < ε . (6)

(b) Show that if f is integrable on [a, b], then |f| is integrable on [a, b], and:

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|.$$

Hence, show that :

 $\left| \int_{-2\pi}^{2\pi} x^2 Sin^8(e^x) dx \right| \le \frac{16\pi^3}{3} \quad . \tag{6}$

(c) Suppose f and g are continuous functions on [a, b], and $g(x) \ge 0 \quad \forall x \in [a, b]$. Prove that, $\exists x \in [a, b]$ such that: $\int_{a}^{b} f(t)g(t) dt = f(x) \int_{a}^{b} g(t) dt .$ (6)

Q.2 (a) (i) The Dirichlet function $f:[0, 1] \rightarrow \mathbf{R}$ is defined by :

 $f(x) = \begin{cases} 1, & x \in [0,1] \cap | \mathbf{Q} \\ 0 & x \in [0,1] \setminus \mathbf{Q} \end{cases} \quad \text{P. T. O.}$

6. (a) (i) Suppose that
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 has radius of conver-

gence R > 0. Then show that $\int_{0}^{1} f(t)dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ for |x| < R

(ii) State when is a power series differentiable term by term. (1.5)

(b) (i) Apply Abel's Theorem to show :

$$\log_e 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots$$
(3.5)

(ii) Given
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $|x| < 1$. Evaluate:
 $\sum_{n=1}^{\infty} \frac{n}{5^n}$, $\sum_{n=1}^{\infty} \frac{n^2(-1)^n}{3^n}$. (3)

(c) (i) App/ly Ratio Test for series to show that radius of convergence R of the power series $\sum a_n x^n$ is given by

 $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|, \text{ whenever the limit exists.}$ (3.5)

(ii) Find radius of convergence for :

$$\sum_{n=2}^{\infty} (\ln(n))^{-1} x^n , \qquad \sum_{n=0}^{\infty} \frac{(n!)^3 x^n}{(3n)!}$$
(3)

3000

0

Is f Riemann Integrable? Justify. (3) (ii) Show that a decreasing function on [a, b] is integrable. (3)

O

0

€2

(2)

(b) (i) State Fundamental Theorem of Calculus-I. (2)

(ii) Let f be an integrable function on [a, b]. Let P be a partition of [a,b] and P* be a refinement of P such that $P^* = P \cup \{u\}$. Show that $L(f, P) \leq L(f, P^*)$. (4)

(c) (i) For a bounded function f on [a, b], define the Riemann Sum associated with a partition P. Hence, give Riemann's definition of integrability. (3)

(ii) Calculate
$$\lim_{h \to 0} \frac{1}{h} \int_{3}^{3+h} e^{t^2} dt$$
 (3)

3. (a) Show that:

 $\beta(x,y) = \int_{0}^{\infty} t^{x} (1-t)^{y} dt \text{ converges } \Leftrightarrow x > 0, y > 0 .$ (7)

(b) (i) Define Improper Integral of Type-II. When does it converge? When is it said to diverge? (5)

(ii) Determine if $\int e^x dx$ is a convergent integral. Justify.

(c) (i) Determine if the following integrals are Improper Integrals. If so, what kind ? Justify.

ii) Prove that
$$\int_{\pi}^{\pi/2} \frac{Sinx}{x} dx, \qquad \int_{0}^{1} x \ln(x) dx \qquad (4)$$

4. (a) State and prove Cauchy's criterion for uniform convergence for sequences of functions. (6)

(b) (i) Is the sequence $\{f_n\}$ where :

 $f_n = \frac{1}{n} \sin(nx + n).$ uniformly convergent on **R** ? Justify.

(2)

(ii) Suppose a sequence $\{f_n\}$ converges uniformly to f on a set A, and further suppose that each f_n is bounded on A. Show that the limit function f is bounded on A. (4)

3

(c) Show that if a>0, then the sequence $\{n^2x^2e^{-nx}\}$ converges uniformly on the interval $[a,\infty)$, but that it does not converge uniformly on the interval $[0,\infty)$. (6)

5. (a) If f_n is continuous on $D \subseteq \mathbf{R}$, for each $n \in \mathbb{N}$ and if $\sum f_n$ converges to f uniformly on D, then f is continuous on D. (6)

(b) Show that the series of functions $\sum \frac{x^n}{(1+x^n)}$, $x \ge 0$,

converges uniformly on [0, a] for 0 < a < 1, but is not uniformly convergent on [0, 1). (6)

(c) A sequence $\{f_n\}$ converges uniformly to f on A_0 , if for each $\varepsilon > 0$ there is a natural number $K(\varepsilon)$, depending only on ε , such that if $n \ge K(\varepsilon)$, then:

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in A_0$.

Hence state a necessary and sufficient condition for a sequence $\{f_n\}$ to fail to converge uniformly on A_0 to f. Apply this condition on sequence $f_n(x) = \frac{x}{n}$, for $x \in \mathbf{R}$ to examine for uniform convergence. (6)