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is conditionally convergent.

(d) Test the following series for Absolute convergence

5,5, 5)
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1. (a) Prove that a lower bound v of a nonempty set S in R is
the Infimum of S if and only if for every € > 0, there exists
an s¢ € Ssuchthats, < v +e.

(b) Let S be a nonempty bounded above set in R. Let a > 0
and aS = {as: s € S}, then prove that Sup (aS) =a Sup S.

(c) If x and y are positive real numbers with x < y, then

prove that there exists a rational number r € Q such that x
<r< y.

(d) Show that Sup {1 - 2:n €N} = 1. 5,58

P.T.0.
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2. (a) Define limit point of a set in R. Prove that a pointc € R

is a limit point of a set S if and only if every neighbourhood
of ¢ contains infinitely many points of S.

(b) Let (x,) be a sequence of real numbers such that ;

lim,_, X, = x > 0, then show that there exists a natural
number K such that
% <X RN,

( ¢) Use the definition of limit to prove:

i. limpae (Vn+1 —vn)=0

. . 3n+2
11. llmn_.,,, (—;:'i—) =3.

(d) Let (x,) be a sequence of positive real numi)ers such
that L= lim,,_,,, (x:“) exists. Show that if L < 1, then (x,)
n

converges and lim,_,.. X, = 0. {(5;:5, 5)

. (a) Let (x,) and (y,,) be sequences of real numbers such
that lim,.,.x, =x and lim,., ¥, =y, then show that
lim i aXay = X0

(b) State Squeeze Theorem and hence prove that
s /n 4t
Hifg LoafR” B0 = b,
where 0 < a < b. : ‘

(c) State and prove Monotone Convergence Theorem.

(d) Let (x,) be a sequence of real numbers defined by
X; =8, Xnsy =2+ 2 forn€N.
Show that (x,) is convergent and find its limit. (5,5, 5)

3

4. (a) Show that the following sequences are divergent:

@ -0

(ii) (sin(?)).

(b) Define a Cauchy sequence and show that every Cauchy
sequence of real numbers is bounded.

(c) Prove that the sequence (x,), where

" n €N

=R

1 1
Xp = 1+§+ §+ e

is not a Cauchy sequence.

(d) Let ¥3-;a, and Y5>, b, be infinite series of positive

real numbers such that lim,_,q (E‘l) = 0. Show that if
n
Yo 1 b, converges, then Yo%, a, converges. (5,5, 5)

. (a) State and prove n-th Root Test to test the convergence

of an infinite series.

(b) Test for convergence any two of the following series:
sl

1. n=1;‘;
1
o ey
11. g o e
n=1(5n+1)2
1
i
111, "=2nlnn ‘

(c) Define Conditional Convergence. Show that the series
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