16 05 18 morning

This question paper contains 4 printed pages.

Your Roll No.

S. No. of Paper : 6630 Unique paper code : 32351201 Name of the paper : Real Analysis Name of course : B.Sc. (Hons.) Mathematics : II Semester Duration : 3 hours : 75 Maximum marks

(Write your Roll No. on the top immediately

on receipt of this question paper.)

Attempt any three parts from each question.

All questions are compulsory.

1. (a) Prove that a lower bound v of a nonempty set S in R is the Infimum of S if and only if for every $\epsilon > 0$, there exists an $s_{\epsilon} \in S$ such that $s_{\epsilon} < v + \epsilon$.

(b) Let S be a nonempty bounded above set in **R**. Let a > 0and $aS = \{as: s \in S\}$, then prove that Sup(aS) = a Sup S.

(c) If x and y are positive real numbers with x < y, then prove that there exists a rational number $r \in O$ such that x < r < y.

Ten is an and sent a more than a market the

(d) Show that Sup $\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\} = 1$.

5,5,5

HC

4

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n-1)}$$

is conditionally convergent.

(d) Test the following series for Absolute convergence:

 $\sum_{i=1}^{\infty} (-1)^n \frac{(n!)^2}{(2n)!}.$

the reason of the second standard of the second standard standard

4)

12

(5, 5, 5)

P. T. O.

2. (a) Define limit point of a set in **R**. Prove that a point $c \in \mathbf{R}$ is a limit point of a set S if and only if every neighbourhood of c contains infinitely many points of S.

2

(b) Let (x_n) be a sequence of real numbers such that $\lim_{n\to\infty} x_n = x > 0$, then show that there exists a natural number K such that

 $\frac{x}{2} < x_n < 2x \qquad \forall \ n \ge K \ .$

(c) Use the definition of limit to prove:

(Brink Color #11 Jali

i.
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$$

ii. $\lim_{n \to \infty} \left(\frac{3n+2}{n+1}\right) = 3$.

(d) Let (x_n) be a sequence of positive real numbers such that $L = \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n}\right)$ exists. Show that if L < 1, then (x_n) converges and $\lim_{n \to \infty} x_n = 0$. (5, 5, 5)

3. (a) Let (x_n) and (y_n) be sequences of real numbers such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then show that $\lim_{n\to\infty} x_n y_n = xy$.

(b) State Squeeze Theorem and hence prove that

 $\lim_{n\to\infty} (a^n + b^n)^{1/n} = b,$ where 0 < a < b.

(c) State and prove Monotone Convergence Theorem.

(d) Let (x_n) be a sequence of real numbers defined by

 $x_1 = 8$, $x_{n+1} = \frac{x_n}{2} + 2$ for $n \in N$. Show that (x_n) is convergent and find its limit. (5, 5, 5) 4. (a) Show that the following sequences are divergent:

(i) $((-1)^n)$ (ii) $\left(\sin\left(\frac{n\pi}{3}\right)\right)$.

(b) Define a Cauchy sequence and show that every Cauchy sequence of real numbers is bounded.

(c) Prove that the sequence (x_n) , where

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, $n \in N$

is not a Cauchy sequence.

(d) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be infinite series of positive real numbers such that $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = 0$. Show that if $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. (5, 5, 5)

5. (a) State and prove *n*-th Root Test to test the convergence of an infinite series.

(b) Test for convergence any two of the following series:

i. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ ii. $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$ iii. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

(c) Define Conditional Convergence. Show that the series

P. T. O.