This question paper contains 4 printed pages

Morning

 $: 93$

 $1/12/2018$

Your Roll No.

S. No. of Paper

Sho

 \langle

 $\left($

€

 \triangle

x

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question. All questions are compulsory

1. (a) (i) Let $X = \mathbb{R} \cup \{ \infty \} \cup \{ -\infty \}$. Define the metric d on X by :

> $d(x, y) = \tan^{-1} x - \tan^{-1} y$, $x, y \in X$, where $\tan^{-1}(\infty) = \pi/2$ and $\tan^{-1}(-\infty) = -\pi/2$. Show that (X, d) is a metric space.

(ii) Let X denote the set of all Riemann integrable functions on $[a, b]$. For f, g in X, define:

$$
d(f, g) = \int_a^b |f(x) - g(x)| dx.
$$

with at *d* is not a metric on X. 3+3=6

(b) Prove that a sequence in \mathbb{R}^n is Cauchy in the Euclidean metric d_2 if and only if it is Cauchy in the maximum metric $d\infty$.

P. T. O.

(b) Prove that the metrics d_1 , d_2 and $d\infty$ defined on \mathbb{R}^n by:

 $d_1(x, y) = \sum_{j=1}^n |x_j - y_j|;$

$$
d_2(x, y) = (\sum_{j=1}^n |x_j - y_j|^2)^{1/2}
$$
; and

 $d\infty$ (x, y) = max { $|x_i - y_i|$: $j = 1, 2, ..., n$ } for $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ are equivalent. $6\frac{1}{2}$

- (c) Prove that a metric space (X, d) is disconnected if and only if there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) . $6\frac{1}{2}$
- 6. (a) If every two points in a metric space X are contained in some connected subset of X, prove that X is connected. $6\frac{1}{2}$
	- (b) Let (X, d) be a metric space and Y a subset of X. Prove that if Y is compact subset of (X, d) , then Y is bounded. Is the converse true? Justify your answer.
	- (c) If f is a one-to-one continuous mapping of a compact metric space (X, d_X) onto a metric space (Y, d_Y) , then prove that f is a homeomorphism. $6\frac{1}{2}$

3100

 $6\frac{1}{2}$

(c) (i) Show that the metric space (X, d) of rational numbers is an incomplete metric space.

 $\overline{2}$

I

 λ

I

 $\big($

db.

 \circ , \circ , \circ

(

i

a

- (ii) Let X be any nonempty set and d be the discrete metric defined on X. Prove that the metric space (X, d) is a complete metric space. $3+3=6$
- 2. (a) Let (X, d) be a metric space. Prove that the intersection of any finite family of open sets in X is an open set in X. Is-it true for the intersection of an arbitrary family of open sets? Justify your answer.
	- (b) Prove that if A is a subset of the metric space (X, d) , then $d(A) = d(\overline{A})$. 6
	- (c) Let F be a subset of a metric space (X, d) . Prove that the following are equivalent:
		- (i) $x \in \overline{F}$
		- (ii) $S(x, \epsilon)$ \cap F $\neq \emptyset$ for every open ball $S(x, \epsilon)$ centered at x ;
		- (iii) There exists an infinite sequence $\{x_n\}$, $n \ge 1$ of points (not necessarily distinct) of F such that $x_n \to x$.
- 3. (a) Let (X, d) be a metric space and $Z \subseteq Y \subseteq X$. If $cl_X(Z)$ and $\text{cl}_{Y}(Z)$ denote, respectively, the closures of Z in the metric spaces X and Y, then show that:

 $cl_Y(Z) = Y \cap cl_X(Z)$.

3

- (b) (i) Let Y be a nonempty subset of a metric space (X, \mathcal{L}) $d_{\rm X}$), and (Y, $d_{\rm Y}$) is complete. Show that Y is closed in X.
	- (ii) Is the converse of part (i) true? Justify your answer. $4+2=6$
- (c) Let d_p (p \geq 1) on the set \mathbb{R}^n be given by:

 $d_p(x, 1y) = (\sum_{j=1}^n |x_j - y_j|^p)^{1/p}$,

for all $x=(x_1, x_2, ..., x_n)$, $y=(y_1, y_2, ..., y_n)$ in \mathbb{R}^n . Show that (R^n, d_p) is a separable metric space. 6

- 4. (a) Prove that a mapping f: $(X, d_X) \rightarrow (Y, d_Y)$ is continuous on X if and only if $f¹(F)$ is closed in X for all closed subsets F of Y. $6\frac{1}{2}$
	- (b) (i) Define an isometry between the metric spaces (X , dy) and (Y , dy), and show that it is a homeomorphism.
		- (ii) Is the completeness of a metric space preserved under homeomorphism? Justify your answer.

 $4+2\frac{1}{2}=6\frac{1}{2}$

- (c) State and prove the Contraction Mapping Principle. $1\frac{1}{2} + 5 = 6\frac{1}{2}$
- 5. (a) Let f be a mapping of (X, d_X) into (Y, d_Y) . Prove that f is continuous on X if and only if for every subset F of Y :

 $f^{-1}(F^0) \subseteq (f^{-1}(F))^0$ 6¹/₂

P. T. O.