10/12/18 (m)

This question paper contains 4 printed pages.

(ii) Write a short note on interest rate swap.

- (b) (i) Does a perfect hedge always succeed in locking in the current spot price of an asset for a future transaction? Explain your answer. 4
 - (ii) Explain the difference between selling a call option and buying a put option. 2
- (c) An investor buys a European put on a share for \$2.5. The stock price is \$45 and the strike price is \$42. Under what circumstances does the investor make a profit? Under what circumstances will the option be exercised? Draw a diagram showing the variation of the investor's profit with the stock price at the maturity of the option.
- 6. (a) Suppose price of a stock is \$31, exercise price is \$30, risk-free interest rate is 10% per annum, the price of a 3-month European call option is \$3 and the price of a 3-month European put option is \$2.25. Is there putcall parity? Can an arbitrageur make profit at the end of 3 months? Justify.
 - (b) (i) Draw and explain profit from buying a European call option on one share of a stock. Given option price is \$5 and strike price is \$100. $3\frac{1}{2}$
 - (ii) Draw and explain payoff from a short call position in a European option with strike price= K, price of asset at maturity = S_T . 3
 - (c) (i) What is the difference between the forward price and the value of a forward contract? 2
 - (ii) Suppose that you enter into a 3-month forward contract on a non-dividend-paying stock when the stock price is \$30 and the risk-free interest rate is 10% per annum. What is the forward price? $4\frac{1}{2}$

600

d.

Your Roll No.

S. No. of Paper	: 755 I
Unique Paper Code	: 32357504
Name of the Paper	: Mathematical Finance
Name of the Course	: B.Sc. (H) Mathematics : DSE-2
Semester	: V
Duration	: 3 hours
Maximum Marks	: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question. Following values may be used if needed :

 $e^{0.025} = 1.0253$, $e^{-0.025} = 0.975$, $e^{0.0125} = 1.0125$ and $e^{-0.0125} = 0.9875$.

1. (a) (i) Define present value and future value of a cash flow stream. 1¹/₂ + 1¹/₂
(ii) What are callable bonds? Discuss mortgage. 1 + 2¹/₂

(b) (i) Find effective rate for 3% compounded monthly. 2

- (ii) A 10% bond with 20 years to maturity has a yield of 9%. What is the price of this bond? 4
- (c) A major lottery advertises that it pays the winner \$10 million. However, this prize money is paid at the rate of \$500,000 each year (with the first payment

P. T. O.

being immediate) for a total of 20 payments. What is the present value of this prize at 10% interest? $6\frac{1}{2}$

0

3

6)

a

- 2. (a) State and prove the price sensitivity formula. Consider a 30-year zero coupon bond. Suppose that its current yield is 10%, D = 30, $D_M \approx 27$. Suppose that the yields increase to 11%. Find the corresponding change in the price. $6\frac{1}{2}$
 - (b) In general, we say that two projects with cash flows x_i and $y_i, i = 0, 1, 2, ..., n$, cross if $x_0 < y_0$ and $\sum_{i=0}^n x_i > \sum_{i=0}^n y_i$. Let $P_x(d)$ and $P_y(d)$ denote the present values of these two projects when the discount factor is d. Show that there is a crossover value c > 0 such that $P_x(c) = P_y(c)$. $6\frac{1}{2}$
 - (c) (i) Define Macaulay duration.
 - (ii) Use Macaulay duration formula to calculate duration of a 7% bond with 3 years to maturity and 8% yield. $3\frac{1}{2}$
- 3. (a) Suppose that there are two assets with $\bar{r}_1 = 0.10$, $\bar{r}_2 = 0.16$, $\sigma_1 = 0.15$, $\sigma_2 = 0.25$ and $\sigma_{12} = 0.04$. A portfolio is formed with weights $w_1 = 0.30$ and $w_2 = 0.70$. Calculate the mean and the variance of the portfolio. Draw the triangular region within which any point corresponding to a portfolio consisting of non-negative mixture of the two assets could lie. 6
 - (b) State One Fund Theorem. In the mean-variance portfolio theory:
 - (i) Discuss the effect of inclusion of a risk-free asset on the efficient frontier.
 - (ii) Which point on the efficient frontier corresponds to the one fund consisting of risky assets as

(c) There are just three assets with rates of return r_1, r_2 and r_3 , respectively. The covariance matrix and the expected rates of return are :

- $V = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad \bar{r} = \begin{bmatrix} 0.4 \\ 0.8 \\ 0.8 \end{bmatrix}$ Find the minimum variance portfolio.
- 4. (a) Suppose there are *n* risky assets. If the market portfolio *M* is efficient, then prove that the expected return \bar{r}_i of any asset *i* satisfies:

$$\bar{r}_i - r_f = \beta_i(\bar{r}_M - r_f)$$

where symbols have usual meaning.

- (b) Mr. S is young and impatient. He notes that the riskfree rate is only 6% and the market portfolio of risky assets has an expected return of 12% and a standard deviation of 15%. He determines that he must attain an average rate of return of about 100% to achieve his goal. What is the expected risk?
- (c) Assume that the expected rate of return on the market portfolio is 23% and the rate of return on T-bills (the risk free rate) is 7%. The standard deviation of the market is 32%. Assume that the market portfolio is efficient.
 - (i) What is the equation of the capital market line?
 - (ii) If you invest \$300 in the risk-free asset and \$700 in the market portfolio, how much money should you expect to have at the end of the year?
- 5. (a) (i) What is the difference between a long forward position and a short forward position? 2

P. T. O.

23

6

6